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This paper presents an improved version of the solution method that won the inventory routing problem

track of the 12th DIMACS Implementation Challenge. The solution method is a branch-and-cut embedded

matheuristic where a matheuristic is called every time new primal solution is found in a branch-and-cut

method. The matheuristic consists of a construction heuristic and an improvement heuristic. The construction

heuristic uses a giant tour method and a shifting assignments method to generate a set of promising routes

which, in turn, are combined into a feasible solution to the problem by solving a route-based mathematical

program. The improvement heuristic then solves a series of extended route-based mathematical programs

where clusters of customers may be inserted and/or removed from the routes of the initial feasible solution.

We have, to the best of our knowledge, gathered all detailed results from previously published methods for

the inventory routing problem and made this overview available online. Compared with these results, the

proposed method found the best-known solution for 741 out of 878 multi-vehicle inventory routing instances,

where 247 of them are strictly better than the previously best-known solutions. Furthermore, we prove

optimality for 458 of these solutions. The proposed method is also able to find the best-known solution

for 116 out of 226 benchmark instances for the split delivery vehicle routing problem, and improve three

best-known solutions from the CVRPlib for the capacitated vehicle routing problem.
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1. Introduction

In this paper, we present an improved version of the solution method that won the inventory routing

problem (IRP) track of the 12th DIMACS Implementation Challenge (DIMACS 2022). The method

was first developed for the IRP, but we show that it can be generalized and that it produces

high-quality solutions also for the split delivery vehicle routing problem (SDVRP) and that the

improvement heuristic part of the methodology finds new best-known solutions for instances of the

capacitated vehicle routing problem (CVRP).
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The IRP arises within the business practice of vendor-managed inventory, and the proposed

algorithm is tailored to tackle the single-depot multi-vehicle IRP version. In this problem, a single

depot has to manage the inventory of a set of customers so that each customer can meet its demand

for a single product over a set of discrete time periods. A fleet of vehicles is used to deliver products

to the customers. The decision maker must simultaneously decide (1) when to visit each customer,

(2) how much to deliver to each customer with each vehicle, and (3) how to route the available

vehicles to minimize the sum of the transportation cost and the inventory holding cost.

The CVRP and SDVRP both consist of a single depot that must deliver a given demand to a set

of customers in a single time period using a fleet of vehicles. The only difference is that the CVRP

limits each customer to be served by one vehicle, while the SDVRP allows multiple visits to each

customer. The SDVRP can be seen as a special case of the IRP, where decision (2) and (3) must be

made, but where decision (1) is predetermined as there is only a single time period. Therefore, we

mainly focus on the IRP, which is the more general variant of the problem.

Bell et al. (1983) were the first to describe the IRP when studying it in the context of industrial

gas distribution. The IRP has later received much attention, and there have been numerous advances

in both exact and heuristic methods in the last two decades. The exact methods can be categorized

to belong within a branch-and-cut (B&C) framework (Archetti et al. 2007, Solyalı and Süral 2011,

Coelho and Laporte 2014, Adulyasak, Cordeau, and Jans 2014, Avella, Boccia, and Wolsey 2015,

2018, Manousakis et al. 2021, Guimarães et al. 2020, Skålnes et al. 2022) or a branch-price-and-

cut (BP&C) framework (Desaulniers, Rakke, and Coelho 2016). Archetti et al. (2007) proposed a

B&C method for the single-vehicle IRP and showed the benefit of using the maximum level (ML)

inventory policy compared with the order-up-to level inventory policy. They also published the first

set of benchmark instances for the single-vehicle IRP, consisting of 5 to 50 customers, and three

and six time periods.

The B&C methods of Avella, Boccia, and Wolsey (2018), Manousakis et al. (2021) and Skålnes

et al. (2022) are all based on two-index vehicle-flow formulations. Avella, Boccia, and Wolsey (2018)

proposed a new set of valid inequalities, the disjoint route (DR) inequalities, and implemented and

tested two subfamilies of these. Manousakis et al. (2021) extended a two-vehicle flow formulation

to a new two-commodity flow formulation inspired by the flow formulation in Baldacci, Hadjicon-

stantinou, and Mingozzi (2004). Skålnes et al. (2022), on the other hand, used a customer schedule

reformulation, i.e., a Dantzig-Wolfe reformulation of the polyhedron connecting delivered quantities

to customer visits, and adapted the capacity inequalities of Desaulniers, Rakke, and Coelho (2016)

to be used within the context of B&C. Guimarães et al. (2020) proposed new mechanisms for fea-

sibility and improvement of IRP solutions that can be embedded within both exact methods and
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heuristics. Archetti and Ljubić (2022) did a thorough comparison of the strength of two- and three-

index vehicle flow formulations, showing that the objective function value of the linear relaxation

is not improved by using a three-index vehicle flow formulation. The smaller number of variables

and constraints in the two-index vehicle flow formulation is then a clear advantage, and with the

results of Avella, Boccia, and Wolsey (2018), Manousakis et al. (2021), and Skålnes et al. (2022) it

is clear that a two-index vehicle flow formulation seems to be better than a three-index vehicle flow

formulation in a B&C method. Even though the B&C method based on the two-commodity flow

formulation of Manousakis et al. (2021) obtained better dual bounds than that of Avella, Boccia,

and Wolsey (2018) at termination, it did not obtain better dual bounds at the root node of the

B&B tree. Thus, the formulation of Avella, Boccia, and Wolsey (2018) seems to be the stronger

of the two. Another method that obtained good dual bounds is the BP&C method of Desaulniers,

Rakke, and Coelho (2016). On average, this method has produced the best dual bounds, and it

outperformed the B&C methods on the four and five vehicle instances.

The heuristic methods for the IRP can mainly be divided into matheuristics (Archetti et al. 2012,

Adulyasak, Cordeau, and Jans 2014, Archetti, Boland, and Speranza 2017, Chitsaz, Cordeau, and

Jans 2019, Diniz, Martinelli, and Poggi 2020, Alvarez et al. 2020, Archetti et al. 2021, Vadseth,

Andersson, and Stålhane 2021, Solyalı and Süral 2022, Achamrah et al. 2022, Vadseth et al. 2023) or

metaheuristics (Alvarez, Munari, and Morabito 2018, Sakhri, Tlili, and Korbaa 2022). Archetti et al.

(2012) focused on the single-vehicle IRP and proposed a hybrid heuristic that combines a tabu search

scheme with an improvement phase that solved mixed integer linear programs (MILPs) to explore

the neighborhood of the current incumbent solution. They also proposed a set of large benchmark

instances consisting of 50, 100, and 200 customers and six time periods. Archetti, Boland, and Sper-

anza (2017) presented a matheuristic designed to tackle the multi-vehicle IRP. Here, they extended

the tabu search scheme originally developed for the single-vehicle version and combined it with two

MILPs to produce an initial solution or improve the current incumbent solution. Chitsaz, Cordeau,

and Jans (2019) introduced a decomposition matheuristic originally designed for the assembly rout-

ing problem and demonstrated that it also works well for the IRP. Diniz, Martinelli, and Poggi

(2020) proposed a matheuristic that used an iterated local search algorithm, with a randomized

variable neighborhood descent, to find the routes in each time period. Then, the matheuristic moved

on to solve a network flow problem to determine the delivered quantities by using an enhanced net-

work simplex method. Alvarez et al. (2020) presented a hybrid heuristic based on the combination

of an iterated local search metaheuristic and two mathematical programming components to solve

the IRP with perishable products. The authors also showed that the method worked well on the

standard IRP. Archetti et al. (2021) proposed a kernel search matheuristic, that used information

gathered by a tabu search to create a sequence of MILPs, which produced high-quality solutions.
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Vadseth, Andersson, and Stålhane (2021) introduced a matheuristic that iteratively solves a route-

based MILP, where the set of routes is altered between each iteration. The initial route set is created

from a giant tour using a split algorithm. This is currently the solution method with the best average

performance on the set of large benchmark instances, which are the set of instances where heuristics

outperform exact methods.

Solyalı and Süral (2022) presented a matheuristic where three different MILPs are solved sequen-

tially. The first two are used to construct a feasible solution, while the third one improves the

solution by finding the best feasible routes within different giant tours created from the current

solution. Achamrah et al. (2022) proposed a two-phase matheuristic that combines mathematical

programming with a genetic algorithm and simulated annealing. The method was developed for the

IRP with transshipments, but the authors also tested it on the standard IRP. Vadseth et al. (2023)

developed a multi-start matheuristic for the production routing problem (PRP) that uses one MILP

to construct solutions and another to improve them. The first MILP is modified in each restart, and

the method proved efficient for the IRP as well. Metaheuristics for the IRP have been presented by

Alvarez, Munari, and Morabito (2018), and Sakhri, Tlili, and Korbaa (2022). The former introduced

a simulated annealing algorithm and an iterated local search algorithm (the same algorithm used

in Alvarez et al. (2020)) and were able to produce good solutions for the IRP in a very short time.

The latter proposed a memetic algorithm based on a genetic algorithm and a variable neighborhood

search method.

The SDVRP was originally proposed by Dror and Trudeau (1989, 1990), as a relaxation of the

CVRP. It was further shown by Archetti, Savelsbergh, and Speranza (2006) that the theoretical

potential savings made by this relaxation are as large as 50%. The problem has received significant

attention in the literature, with several exact and heuristic solution methods proposed. Like the

IRP, exact methods for the SDVRP have mainly been based on B&C, with contributions from Dror,

Laporte, and Trudeau (1994), Belenguer, Martinez, and Mota (2000), Archetti, Bianchessi, and

Speranza (2014), Ozbaygin, Karasan, and Yaman (2018) and Munari and Savelsbergh (2022), while

the only branch-and-price (B&P) approach for the SDVRP is proposed by Archetti, Bianchessi, and

Speranza (2011). The results show that exact methods are able to solve benchmark instances of up

to 80 customers to optimality, with one 100-customer instance solved by Archetti, Bianchessi, and

Speranza (2014).

Due to the limited success of exact methods on larger instances, a large number of heuristics

have been proposed. Most approaches are either local search-based metaheuristics such as (iterated)

local search (Derigs, Li, and Vogel 2010, Silva, Subramanian, and Ochi 2015), tabu search (Archetti,

Speranza, and Hertz 2006), and variable neighborhood search (Aleman, Zhang, and Hill 2010),

or evolutionary algorithms such as scatter search (Campos, Corberán, and Mota 2008), genetic
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algorithms (Wilck IV and Cavalier 2012), particle swarm algorithms (Shi et al. 2018), and memetic

algorithms (Boudia, Prins, and Reghioui 2007, He and Hao 2022). Only a few attempts have been

made to develop matheuristics for this problem (Chen, Golden, and Wasil 2007, Archetti, Speranza,

and Savelsbergh 2008, Jin, Liu, and Eksioglu 2008), and none of them have produced any of the

currently best-known solutions to the well-established benchmark instances for the SDVRP (He and

Hao 2022).

As seen in the above review of the literature, there are many solution methods for the IRP and the

SDVRP. Exact solution methods for both problems are dominated by B&C approaches, while the

best-performing heuristic approaches differ. For the IRP, matheuristics have been prevalent in recent

years, while for the SDVRP, the recent approaches are mainly based on evolutionary algorithms,

inspired by those used for the CVRP. A possible explanation is that changes to an IRP solution

are seldom local, but may include changing the decisions in many time periods. This makes the

evaluation of a local search operator very complex and time-consuming, which discourages the use

of local-search based methods for the IRP.

In this paper we present a general B&C embedded matheuristic to solve the IRP and the SDVRP.

Our main contributions are the following:

– We design a new matheuristic that extends the work of Vadseth, Andersson, and Stålhane

(2021) and Vadseth et al. (2023).

– We formulate a new improvement MILP within the improvement heuristic, allowing for clusters

of customers to be removed from, or inserted into, routes of a solution.

– We develop a new route generating heuristic as part of a construction heuristic.

– We propose tightened versions of the valid inequalities presented by Coelho and Laporte (2014).

– We adapt the B&C method by Skålnes et al. (2022) to better handle large instances.

– We create, to the best of our knowledge, an overview of all known detailed results of methods

that solve the multi-vehicle benchmark instances of the IRP.

The proposed method has found the best-known solution for 741 of the 878 multi-vehicle bench-

mark instances for the IRP, where 247 of them are strictly better than the previously best-known

solutions found in the literature. Furthermore, 458 of the 741 solutions are proved to be optimal.

This clearly outperforms all other solution methods for the IRP by a large margin and establishes

the proposed method as state-of-the-art. We have also demonstrated that the proposed matheuristic

is significantly better than the previous version, which won the IRP track of the DIMACS Implemen-

tation Challenge. Furthermore, we have collected, to the best of our knowledge, all published results

from every published paper on the standard IRP and made this overview easily available online.

We believe that this contribution is of great value to anyone interested in doing further research on

the IRP. In addition, the proposed method produces results for the SDVRP that are competitive
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with the state-of-the-art and finds the best-known solution for 116 out of 226 benchmark instances,

where 14 of them are strictly better than the previously best-known solutions found in the literature.

Finally, the improvement heuristic is able to improve the best-known solution for three of the ten

large benchmark instances for the CVRP released by Arnold, Gendreau, and Sörensen (2019).

The remainder of the paper is organized as follows. Section 2 defines the IRP and presents a

mathematical formulation of the problem. The proposed method and each of its components are

described in detail in Section 3, while our computational analyses for the IRP are reported in Section

4. The computational results for the SDVRP and CVRP are presented in Section 5. Lastly, our

concluding remarks are presented in Section 6.

2. Problem description and mathematical model
In this section, we provide a detailed description of the IRP and present a mathematical formulation

that both serves as a clear definition of the problem and forms the base of the B&C method presented

in Section 3.3. To limit the length of the manuscript, we do not provide a full description of the

SDVRP or the CVRP. Instead, we describe the modifications of the presented model necessary to

define the other routing problems in the relevant sections.

The IRP version considered in this paper consists of a single depot, denoted 0, that manages the

inventories of a set of customers NC over a set of discrete time periods T so that each customer

i∈NC in each time period t∈ T can satisfy its demand Dit of a single product. The depot produces

St units of this product in time period t and has to deliver the necessary quantities to the customers.

To accommodate the deliveries, the depot must route a fleet of V homogeneous vehicles, each with

a capacity to hold Q units of the product, such that the sum of transportation costs and inventory

holding costs is minimized. Each customer and the depot i ∈ NC ∪ {0} have a lower and upper

inventory level, Li and Ui, respectively. The depot and each customer i ∈NC ∪{0} have an initial

inventory level Ii at the beginning of the first time period. Let Iit =max{Ii −
∑t

s=0Dit,0} be the

inventory that is left from the initial inventory at customer i∈NC in time period t∈ T .

This problem can be modeled on a graph G= (N ,A), where N =NC ∪{0} is the set of of nodes

and A= {(i, j) ∈ {N ×N} | i ̸= j} is the set of arcs connecting the nodes in the graph. Let Cij be

the cost of traversing arc (i, j) and let CH
i be the unit inventory holding cost of node i ∈ N . Let

xijt be 1 if arc (i, j)∈A is traversed in time period t∈ T , and 0 otherwise. Let sit be the inventory

level at the depot or a customer i ∈N at the end of time period t ∈ T and let δit be 1 if customer

i∈NC is visited in time period t∈ T , and 0 otherwise. Moreover, let δ0t be the number of vehicles

that leave the depot in time period t∈ T , and let qit be the delivered quantity to customer i∈NC

in time period t∈ T . Using this notation, we can formulate the IRP as the following MILP:

min
∑

(i,j)∈A

∑
t∈T

Cijxijt +
∑
i∈N

∑
t∈T

CH
i sit, (1)
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s0t = St −
∑
i∈NC

qit + s0(t−1), t∈ T , (2)

sit = qit −Dit + si(t−1), i∈NC , t∈ T , (3)

L0 ≤ s0t ≤U0, t∈ T , (4)

Li ≤ sit ≤Ui, i∈NC , t∈ T , (5)

qit ≤Ui − si(t−1), i∈NC , t∈ T , (6)∑
i∈NC

qit ≤Qδ0t, t∈ T , (7)

qit ≤min{Ui − Iit,Q}δit, i∈NC , t∈ T , (8)∑
j∈N\{i}

xijt = δit, i∈N , t∈ T , (9)∑
j∈N\{i}

xijt =
∑

j∈N\{i}

xjit, i∈N , t∈ T , (10)∑
(i,j)∈(S:S)

xijt ≤
∑
i∈S

δit − δmt, S ⊂NC , |S| ≥ 2, t∈ T ,m∈ S. (11)∑
(i,j)∈(S:N\S)

Qxijt ≥
∑
i∈S

qit, S ⊂NC , |S| ≥ 2, t∈ T , (12)

qit ≥ 0, i∈NC , t∈ T , (13)

δit ∈ {0,1}, i∈NC , t∈ T , (14)

δ0t ∈ {0,1, ..., V }, t∈ T , (15)

xijt ∈ {0,1}, (i, j)∈A, t∈ T , (16)

where s00 = I0 and si0 = Ii, i∈NC . The sum of the transportation cost and the inventory holding cost

is minimized in objective function (1). The inventory balance at the depot and at the customers are

enforced by constraints (2) and (3), respectively. Constraints (4) and (5) ensure that the inventory

levels at the depot and at the customers always stay between their lower and upper limits. The

ML inventory policy is enforced by constraints (6), while constraints (7) state that the depot never

delivers more than the fleet capacity to the customers in a given time period. Constraints (8) ensure

that a delivery to a given customer only can occur if the customer is visited. Constraints (9) are

the degree constraints, and correct flow of vehicles between nodes is ensured by constraints (10).

Constraints (11) and (12) impose the standard and capacitated subtour elimination constraints,

respectively, where (E :F) = {(i, j) : i ∈ E , j ∈F \ {i}} denotes the set of arcs going from a node in

set E to a node in set F . Note that constraints (11) are not necessary for defining the problem, but

preliminary testing indicated that they enhance performance. Finally, constraints (13) – (16) define

the variable domains.
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3. The branch-and-cut embedded matheuristic

The branch-and-cut embedded matheuristic presented in this paper includes a construction heuristic,

an improvement heuristic, and a B&C method. The solution method is illustrated in Figure 1 and

begins by constructing a feasible solution using a construction heuristic followed by an improvement

heuristic. This solution is then used as an initial primal solution for the B&C method. Whenever

the B&C method encounters a new incumbent solution, it is fed to the improvement heuristic, and

any improved solution found by the improvement heuristic is passed back to the B&C method. This

cycle between the B&C method and the improvement heuristic continues until optimality is proven

or a time limit is reached.

StartConstructing
a feasible solution

Improvement heuristic B&C method

End

If: Termination criterion

If: New best UB

Figure 1 An overview of the proposed solution method.

The rest of this section is organized as follows: In Section 3.1–3.3 we present each part of the

solution method designed for the IRP. First, the construction heuristic is described in detail in

Section 3.1, before Section 3.2 introduces the improvement heuristic. The B&C method is presented

in Section 3.3. Finally, we describe the small modifications needed to apply the solution method to

the SDVRP in Section 3.4.

3.1. Construction heuristic

The construction heuristic is an extension of the construction heuristic presented in Vadseth, Ander-

sson, and Stålhane (2021). The goal of the construction heuristic is to construct a (good) feasible

solution to the IRP. This is done by creating a small set of promising routes R̂ and then solving a

MILP to select a subset of these routes that form a feasible solution to the IRP.

The route-based MILP is a Dantzig-Wolfe reformulation of the mathematical model given in

Section 2, where each route r ∈ R̂ corresponds to an extreme point of the polytope defined by

constraints (10), (11) and the linear relaxation of (16), describing the set of Hamiltonian cycles

through a subset of the nodes including the depot. Note that this formulation is equivalent to the

formulation given in Section 2 if R̂ includes all feasible routes.

The parameter Aijr is 1 if route r traverses the arc (i, j)∈A, and 0 otherwise. Hence, the cost of

route r ∈ R̂ can be defined as CT
r =

∑
(i,j)∈ACijAijr. Further, if route r ∈ R̂ is used by a vehicle in
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time period t ∈ T then variable λrt is 1, and 0 otherwise. In addition, the quantity product loaded

onboard a vehicle traversing arc (i, j) ∈A in time period t ∈ T is denoted lijt. With this notation,

the model can be formulated as follows:

min
∑
i∈N

∑
t∈T

CH
i sit +

∑
r∈R̂

∑
t∈T

CT
r λrt (17)

Constraints (2)− (6),∑
j∈N

ljit − qit −
∑
j∈N

lijt = 0, i∈NC , t∈ T , (18)

lijt −Q
∑
r∈R̂

Aijrλrt ≤ 0, (i, j)∈A, t∈ T , (19)

∑
r∈R̂

∑
j∈N

Aijrλrt ≤ 1, i∈NC , t∈ T , (20)

∑
r∈R̂

λrt ≤ V, t∈ T , (21)

λrt ∈ {0,1}, r ∈ R̂, t∈ T , (22)

qit ≥ 0, i∈NC , t∈ T , (23)

lijt ≥ 0, (i, j)∈A, t∈ T . (24)

The transportation and inventory holding costs are minimized in the objective function (17).

Constraints (18) are flow balance constraints. Constraints (19) guarantee that the load on an arc

does not exceed the capacity of a vehicle. In addition, constraints (20) ensure that a customer is not

visited more than once in the same time period, while constraints (21) limit the number of routes

used in a solution to be no more than the number of vehicles available. Finally, the variable domains

are defined by constraints (22) – (24).

To strengthen the linear relaxation of the model, we propose new tightened versions of the three

classes of valid inequalities presented in Coelho and Laporte (2014). The original inequalities are

based on the fact that there has to be at least one visit to a customer in time periods {t1, . . . , t2} ∈ T

if the sum of the demands in time period t1 to t2 is greater than the maximum inventory limit:

∑
r∈R̂

t2∑
t′=t1

∑
j∈N

Aijrλrt′ ≥

⌈∑t2
t′=t1

Dit′ −Ui

Ui

⌉
, i∈NC , t1, t2 ∈ T , t2 ≥ t1. (25)

The valid inequalities (25) can be further strengthened by replacing the upper inventory limit Ui

with the actual inventory si(t1−1) and instead of dividing by the upper inventory limit Ui, divide by

min{Q,Ui,
∑t2

t′=t1
Dit′}. This gives three different classes of valid inequalities. However, they can be

further strengthened by realizing that deliveries are performed before consumption according to the

problem description of the standard IRP (Archetti et al. 2007) and constraints (6) dictate that the

maximum inventory held at a node at the beginning of a time period t is Ui −Di(t−1). This gives
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us two tightened classes of valid inequalities (two of the classes presented in Coelho and Laporte

(2014) can in fact be merged into one):

∑
r∈R̂

t2∑
t′=t1

∑
j∈N

Aijrλrt′ ≥

⌈∑t2
t′=t1

Dit′ −Ui −Di(t1−1)

min{Q,Ui −Di(t1−1)}

⌉
, i∈NC , t1, t2 ∈ T , t2 ≥ t1, (26)

∑
r∈R̂

t2∑
t′=t1

∑
j∈N

Aijrλrt′ ≥
∑t2

t′=t1
Dit′ − si(t1−1)

min{Q,Ui −Di(t1−1),
∑t2

t′=t1
Dit′}

, i∈NC , t1, t2 ∈ T , t2 ≥ t1. (27)

In addition, if t1 = 1, we can replace Ui −Di(t1−1) in the numerator of valid inequalities (26) and

si(t1−1) in the numerator of valid inequalities (27) with Ii (the actual inventory held at the start of

time period t1).

3.1.1. Route generation. Two methods are used, one of them new to the literature, to gen-

erate routes for the set R̂. The first method, called the giant tour method, is taken from Vadseth,

Andersson, and Stålhane (2021). Here, we find the optimal solution of a traveling salesman problem

(giant tour) defined on the graph GC = {NC ,AC}, where AC = {(i, j) ∈NC ×NC |i ̸= j} is the set

of arcs connecting every pair of customers. Each customer in the giant tour is assigned a delivered

quantity equal to a predefined percentage P of its inventory capacity. The giant tour with these cor-

responding delivered quantities is then converted to a capacitated vehicle routing problem (CVRP)

solution by applying the splitting algorithm of Vidal (2016). The routes of the CVRP solutions are

added to R̂. The allocation of delivered quantities is repeated iteratively with a decreasing P , so

that we generate both short and long routes. We refer to Vadseth, Andersson, and Stålhane (2021)

for further details.

The second method, called the shifting assignment method, is outlined in Algorithm 1. Let q̂it

and fvt denote the quantity to deliver to customer i, and the load onboard vehicle v, respectively,

in time period t. Further, let vit store the index of the vehicle serving customer i in time period t,

with an index of 0 indicating that the customer is not served in that time period. We also introduce

K= {1, . . . , V } as the set of vehicles. The algorithm first assigns values to q̂it on line 2, so that no

product is assigned until the initial inventory runs out and from then on is assigned the customer’s

demand in each time period that cannot be covered by the initial inventory. Then, on lines 3–6,

each q̂it is assigned to the vehicle vit with the lowest load onboard fvt (line 4), and the vehicle load

is updated (line 5).

Once the initial assignments are determined, the shifting assignment part of Algorithm 1 shifts

delivery quantities from time period t to time period t− 1 on lines 8–21. It does this by iterating

over each time period given that at least one vehicle departs in the previous time period, and each

customer with a positive quantity q̂it (lines 8 and 9). If that customer is not serviced in the previous

time period, the quantity q̂it is added to the vehicle with the largest load that can fit the quantity
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(lines 10–12). Otherwise, it is added to the vehicle already serving customer i in the previous time

period, given that this vehicle has sufficient space (line 13). Lines 14–18 update the vehicle loads

and the delivered quantities. Finally, a CVRP instance is solved for each time period t with delivery

quantities q̂it, i ∈ NC as input (line 23). Note that for the CVRP instance in time period t, only

customers with q̂it > 0 are included. The resulting routes from the solutions of the CVRP instances

are then added to R̂ (line 24).

As long as q̂it ≤Q, i∈NC , t∈ T and fvt ≤Q, v ∈K, t∈ T after the initial assignment phase, the

shifting assignment method is guaranteed to produce feasible CVRP instances. For readability, we

have assumed that this is always the case in Algorithm 1. However, if this is not the case, Algorithm

1 will terminate, and no CVRP instances are solved. For this work, we use the hybrid genetic

algorithm presented in Vidal et al. (2012) to solve the CVRP instances. More specifically, we use

the open-source implementation which is described in Vidal (2022). If feasible CVRP instances are

created, we know that the resulting routes and q̂it, i∈NC , t∈ T make up a feasible solution to the

original problem and can be used as an initial primal solution when solving the route-based model.

Algorithm 1 The Shifting Assignment Method
1: *The initial assignment part*

2: q̂it =max{Dit − Iit,0}, t∈ T , i∈NC

3: for i∈NC , t∈ T do

4: vit = argminv∈K{fvt}

5: fvitt = fvitt + q̂it

6: end for

7: *The shifting assignments part*

8: for t∈ T \ {1} :
∑

v∈K fv(t−1) ̸= 0 do

9: for i∈NC : q̂it > 0 do

10: if vi(t−1) = 0 then

11: vi(t−1) = argmaxv∈K{fv(t−1)|fv(t−1) + q̂it ≤Q}

12: end if

13: if fvi(t−1)(t−1) + q̂it ≤Q then

14: fvi(t−1)(t−1) = fvi(t−1)(t−1) + q̂it

15: fvitt = fvitt − q̂it

16: q̂i(t−1) = q̂i(t−1) + q̂it

17: q̂it = 0

18: vit = 0

19: end if

20: end for

21: end for

22: *The CVRP part*

23: Solve |T | CVRP instances with q̂ as input

24: Add all routes from the CVRP solutions to R̂
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3.2. Improvement heuristic

The improvement heuristic consists of solving a MILP that aims to improve a feasible solution

within a well-defined neighborhood, for a finite number of iterations. In each iteration, the MILP

explores a set of modifications of the routes of a feasible solution to the original problem. In the first

iteration, the routes originate from the solution obtained by the construction heuristic, and for the

remaining iterations, the routes are taken from the solution of the previous iteration. An outline of

the improvement heuristic is given in Algorithm 2. The improvement MILP is presented in Section

3.2.1.
Algorithm 2 Improvement heuristic
1: Input: x

2: xbest = x

3: R̂= getRoutes(xbest)

4: for h∈ {1,2} do

5: for ITh iterations do

6: if h= 2 then

7: R̂= R̂
⋃
V RP (xbest)

8: end if

9: xcurrent = ImprovementMILP (R̂)

10: if f(xcurrent)< f(xbest) then

11: xbest = xcurrent

12: R̂= getRoutes(xbest)

13: else

14: Break

15: end if

16: end for

17: end for

18: return xbest

Algorithm 2 gets a feasible solution x as input and sets this to the incumbent solution xbest

(lines 1 and 2). It then populates the route set R̂ with the routes from this solution using the

getRoutes() function (line 3). The main part of the heuristic is described on lines 4-17, where the

algorithm iterates between solving the improvement MILP in the function ImprovementMILP (R̂)

and updating the route set R̂. The route set is updated in two different ways, controlled by the

parameter h (line 4), with ITh setting an upper limit on the number of iterations (line 5). If h= 1

the improvement MILP is solved using only the routes of the solution from the previous iteration,

while if h= 2 we add additional routes obtained by calling the function V RP (x) described below.

Once the route set is populated, the MILP is solved (line 9) to obtain a new current solution. If this

solution has a better objective value than xbest (line 10), it is set as the new best solution and its
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routes make up the new route set. Otherwise, we either increase h or stop the algorithm (line 14) if

h= 2. Finally, the best solution xbest is returned (line 18).

The function V RP (x) takes a feasible solution x as input and solves three CVRP instances for

each time period t ∈ T , where the demand of each customer is set equal to its delivered quantity

in time period t. However, the vehicle capacity Q is set differently in the three instances. The

motivation for this is that quantities can be shifted between time periods in the IRP, and better

routing decisions can be obtained by making small adjustments. By varying the vehicle capacity Q,

we mimic the effect of shifting quantities between time periods and are hopefully able to find better

routes. The capacity is adjusted by multiplying Q with 0.97, 1.03, and 1.06 in the three CVRP

instances, respectively. The number of vehicles used in the solution of such a CVRP instance might

decrease or increase compared with the corresponding time period of the current IRP solution,

depending on whether the adjusted vehicle capacity Qnew is greater or smaller than the actual

vehicle capacity, respectively. This can be interpreted as a temporary expansion of the search space

neighborhood, where we might find routes that the improvement MILP otherwise would not be able

to encounter. Even though the aim of this procedure is to avoid getting stuck in a local optimum,

we do not consider it disruptive enough to truly represent a diversification mechanism.

3.2.1. The improvement MILP. The improvement MILP is a modified version of the route-

based model presented in Section 3.1, where the routes in R̂ can be modified by inserting or removing

customers. All alterations of the original routes, even in cases where multiple changes are made

simultaneously, are evaluated correctly in the objective function, i.e., an improved solution of the

improvement MILP is also an improved solution of the original problem.

To present the improvement MILP, we introduce some additional notation. We let the set Nr

denote the customers visited on route r ∈ R̂, while N r =NC \ Nr is the complement set. To add

customers to routes we introduce a set of clusters C, where a cluster c∈ C is a subset of the customers,

c⊆NC . The subset Cr of clusters associated with route r is defined as Cr = {c ∈ C|c∩Nr = ∅}. We

also introduce the variable zcrt that is 1 if cluster c∈ Cr is inserted into route r ∈ R̂ in time period

t∈ T , and 0 otherwise. A cluster is always inserted into the least cost position on the route, p∗r(c),

calculated as:

p∗r(c) = argmin
p∈1,...,|Nr|+1

{CSP (ir(p− 1), c, ir(p))−Cir(p−1),ir(p)}, r ∈ R̂, c∈ Cr, (28)

where the function ir(p) gives the node placed in position p in route r, and CSP (istart, c, iend) returns

the cost of the shortest path starting in node istart ∈N , traveling through all customers in cluster

c∈ C and ending in node iend ∈N . Please note that the depot has both position 0 (the first position)
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and position |Nr|+ 1 (the last position) in all routes r ∈ R̂. The cost of adding cluster c ∈ Cr to

route r ∈ R̂, CI
cr, is calculated as:

CI
cr =CSP (ir(p

∗
r(c)− 1), c, ir(p

∗
r(c)))−Cir(p∗r(c)−1),ir(p∗r(c)), r ∈ R̂, c∈ Cr. (29)

0

a

b
c

d

e
Route r

Cluster c̃

ir(1) = a

ir(2) = d
p∗
r(c̃) = 2

CT
r =C0a +Cad +Cde +Ce0

CI
c̃r =CSP (ir(1), c̃, ir(2))−Cir(1),ir(2)

=Cab +Cbc +Ccd −Cad

0→ a→ b→ c→ d→ e→ 0 :CT
r +CI

c̃r

=C0a +Cab +Cbc +Ccd +Cde +Ce0

Figure 2 A route consisting of the depot and nodes a, d and e is changed to a route consisting of the depot and nodes

a, b, c, d and e using cluster insertion. The cost of the route is then changed from C0a +Cad +Cde +Ce0

to C0a +Cab +Cbc +Ccd +Cde +Ce0.

Figure 2 shows an example where cluster c̃= {b, c} (red ellipse) is inserted into the route 0→ a→

d→ e→ 0 (dotted arrows). The cheapest position to insert cluster c̃ is pr(c̃) = 2 which is between

node a and d. In addition, the shortest route starting in node a, visiting all nodes in c̃, and ending

in node d is a→ b→ c→ d with cost CSP (a, c̃, d) =Cab +Cbc +Ccd. The new route is marked with

solid arrows.

In this work, a k-means algorithm (Ahmed, Seraj, and Islam 2020), with a k-value = ⌊|NC |/2⌋

dictating the number of clusters, has been used to produce clusters with cardinality greater than 1.

All clusters c produced by the algorithm are placed in the set Ck, given that the size of c is in the

range [2, . . . , clusterSize]. We set the parameter clusterSize= 3, which is the largest cluster size

we want to include in the model. We can then set C =
{⋃

i∈NC{i}
⋃
Ck

}
.

Removing customers from a route is modeled by introducing variables wϕ
prt which is 1 if exactly ϕ∈

Φ consecutive customers are removed from route r ∈ R̂ starting from position p∈Pϕ
r in time period

t ∈ T , and 0 otherwise. We introduce the parameter M as the maximum number of consecutive

customers that can be removed and hence define the set Φ = {1, . . . ,M}. The set Pϕ
r contains all

positions p in route r from where ϕ consecutive customers can be removed. For each route r ∈ R̂ in

time period t∈ T we let the variable uirt be 1 if node i∈Nr is removed from route r, and 0 otherwise.

The cost reduction of removing ϕ customers from route r starting at position p is calculated as:

CR
ϕpr =

p+ϕ∑
p′=p

Cir(p′−1),ir(p′) −Cir(p−1),ir(p+ϕ), r ∈ R̂, ϕ∈Φ, p∈Pϕ
r . (30)

Figure 3 shows the cost calculations of a route in the improvement MILP if a cluster consisting of a

single customer (e) is added to a route and a sequence of three consecutive customers (ϕ= 3) starting
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0

a

b
c

d

e

Route r

ir(2) = b

ir(1) = a

ir(3) = c

ir(0) = 0

ir(4) = d

p∗
r({e}) = 5

CT
r =C0a +Cab +Cbc +Ccd +Cd0

CR
31r =C0a +Cab +Cbc +Ccd −C0d

CI
{e}r =Cde +Ce0 −Cd0

0→ d→ e→ 0 :CT
r −CR

31r +CI
{e}r

=C0d +Cde +Ce0

Figure 3 A route consisting of the depot and nodes a, b, c and d is changed to a route consisting of the depot and

nodes d and e using a single insertion and multiple removals in a row. The cost of the route is then changed

from C0a +Cab +Cbc +Ccd +Cd0 to C0d +Cde +Ce0.

from position p= 1 are removed from the same route. The original route 0→ a→ b→ c→ d→ 0 is

marked with dotted arrows. The new route is marked with solid arrows.

To formulate the improvement MILP, we must also define the variable qirt which denotes the

quantity delivered by route r to node i in time period t. The improvement MILP can be formulated

as follows:

min
∑
i∈NC

∑
t∈T

CH
i sit +

∑
r∈R̂

∑
t∈T

CT
r λrt −

∑
r∈R̂

∑
ϕ∈Φ

∑
p∈P

ϕ
r

∑
t∈T

CR
ϕprw

ϕ
prt +

∑
r∈R̂

∑
c∈Cr

∑
t∈T

CI
crzcrt (31)

Constraints (2)− (6),

qit =
∑
r∈R̂

qirt, i∈Nr, t∈ T , (32)

qirt −min(Q,Ui)(1−uirt)≤ 0, r ∈ R̂, i∈Nr, t∈ T , (33)

qirt −min(Q,Ui)
∑

c∈Cr :i∈c

zcrt ≤ 0, r ∈ R̂, i∈N r, t∈ T , (34)∑
i∈NC

qirt ≤Qλrt, r ∈ R̂, t∈ T , (35)∑
r∈R̂:i∈Nr

(λrt −uirt)+
∑

r∈R̂:i∈N r

∑
c∈Cr

zcrt ≤ 1, i∈NC , t∈ T , (36)

∑
c∈Cr :i∈c

zcrt ≤ λrt, r ∈ R̂, i∈N r, t∈ T , (37)

uirt ≤ λrt, r ∈ R̂, i∈Nr, t∈ T , (38)
p+ϕ−1∑
p′=p

uir(p′)rt ≥ ϕwϕ
prt, ϕ∈Φ, r ∈ R̂, p∈Pϕ

r , t∈ T , (39)

∑
c∈Cr :p∗r(c)=p

zcrt +
∑
ϕ∈Φ

p∑
p′=p−ϕ+1

wϕ
p′rt ≤ 1, r ∈ R̂, p∈ 1, . . . , |Nr|+1, t∈ T , (40)

∑
r∈R̂

λrt ≤ V, t∈ T , (41)
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λrt ∈ {0,1}, r ∈ R̂, t∈ T , (42)

uirt ∈ {0,1}, r ∈ R̂, i∈Nr, t∈ T , (43)

zcrt ∈ {0,1}, r ∈ R̂, c∈ C, t∈ T , (44)

wϕ
prt ∈ {0,1}, ϕ∈Φ, r ∈ R̂, p∈Pϕ

r , t∈ T , (45)

qirt ≥ 0, i∈NC , r ∈ R̂, t∈ T . (46)

The objective function (31) minimizes the sum of the transportation and inventory holding costs

over the entire planning horizon. Constraints (32) link the old qit variable with the new qirt variable.

Constraints (33) and (34) state that a customer can only be served if it is visited, while constraints

(35) ensure that the vehicle capacity is respected. The fact that a customer can only be served at

most once per time period is guaranteed by constraints (36). Constraints (37) and (38) enforce that

a customer cannot be added to or removed from an unused route. Constraints (39) specify that all

uirt variables in sequence ϕ starting at position p are set to 1, if wϕ
prt is 1, and constraints (40) state

that for each position p in route r, at most one cluster can be inserted or at most one sequence

including this position can be set to 1. Constraints (41) ensure that the fleet capacity is respected.

Constraints (42)-(46) define the variable domains.

To ensure that the possible route modifications are evaluated correctly in the objective function,

we must enforce some limitations on which modifications that can be allowed. This is achieved by

adding the following constraints:

uir(p∗r(c)−1)rt +uir(p∗r(c))rt ≤ 2(1− zcrt) r ∈ R̂, c∈ Cr, t∈ T , (47)

uir(p−1)rt +uir(p+ϕ)rt ≤ 2(1−wϕ
prt) ϕ∈Φ, r ∈ R̂, p∈Pϕ

r , t∈ T . (48)

Constraints (47) make sure that if cluster c is added to route r then the customers in positions

p∗r(c)−1 and p∗r(c) must be included in the route. Constraints (48) state that if a sequence of nodes

is removed from the route, then the node preceding and succeeding the sequence cannot be removed.

Finally, note that the improvement MILP assumes that the triangle inequality holds.

3.3. Branch-and-cut method

In this section, we present the B&C method used in our computational experiments. A B&C method

is an extension of the well-known branch-and-bound (B&B) algorithm, where cutting planes or valid

inequalities may be added to the linear relaxation of the model at every node of the B&B tree that

does not satisfy the integer requirements. We use the customer schedule formulation presented by

Skålnes et al. (2022), which was shown to be a strong formulation in a B&C setting. This formulation

is a Dantzig-Wolfe reformulation of the polyhedron defined by the linear relaxation of constraints

(3), (5), (6), (8), (13) and (14), which connects the customer visits to the delivered quantities. For
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each customer i∈NC , we define the set of customer schedules Ωi, i.e., the set of extreme points in

the polyhedron mentioned. For each customer i∈NC and corresponding customer schedule ω ∈Ωi,

let the use of customer schedule ω for customer i be denoted yiω, let Bitω be 1 if customer i is

visited in time period t∈ T by using customer schedule ω, and 0 otherwise, let Qitω be the delivered

quantity to customer i in time period t ∈ T by using customer schedule ω, and let Sitω be the

inventory level at customer i in time period t∈ T if customer schedule ω is used. Using the notation

defined above, we formulate the IRP as the following MILP:

min
∑

(i,j)∈A

∑
t∈T

Cijxijt +
∑
i∈NC

∑
t∈T

∑
ω∈Ωi

CH
i Sitωyiω +

∑
t∈T

CH
0 s0t (49)

Constraints(2), (4), (7), (9)− (16),

qit =
∑
ω∈Ωi

Qitωyiω, t∈ T , i∈NC , (50)

δit =
∑
ω∈Ωi

Bitωyiω, t∈ T , i∈NC , (51)∑
ω∈Ωi

yiω = 1, i∈NC , (52)

yiω ≥ 0, i∈NC , ω ∈Ωi. (53)

The objective function (49) minimizes the sum of the transportation cost, the inventory holding

cost at the customers, and the inventory holding cost at the depot. Note that we can omit constraints

(3), (5) and (6), because they are implicitly handled within the customer schedules. Constraints (50)

and (51) link the original decision variables for delivered quantities and customer visits to convex

combinations of customer schedules. Constraints (52) make sure we only use a convex combination

of customer schedules and constraints (53) define the non-negativity requirements for the customer

schedule variables.

In addition, we propose an alternative formulation of the customer schedule. We observe that

we can significantly reduce the number of customer schedules by substituting the equality sign of

constraints (51) with a ≥ sign:

δit ≥
∑
ω∈Ωi

Bitωyiω, i∈NC , t∈ T . (54)

Then we no longer need to enumerate customer schedules that visit a customer i ∈NC without

delivering anything, e.g., Bitω = 1 and Qitω = 0. In constraints (51), we need these customer schedules

to express all feasible solutions due to the equality sign. However, by using the updated version, we

get the same dual bound of the linear relaxation, but with the cost of weaker branching decisions.

Note that the up-branch on whether we visit a customer or not will have little to no effect on the
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convex combination of customer schedules. Preliminary testing indicated that the B&C method at

termination, with the updated constraints (54), obtained higher average dual bounds for the large

instances, but at the cost of slightly worse average dual bounds for the small instances. The large

instances are closer to realistically sized instances, and therefore we value the performance on these

more than that of the small instances. Also note that the new version of the customer schedule

formulation requires the triangle inequality to be satisfied to be a valid formulation for the IRP.

This is handled by updating the cost matrix by finding the shortest path between all pairs of nodes

so that the triangle inequality is guaranteed to be satisfied. For the instances where the triangle

inequality was not originally satisfied, the solution is post-processed so that routes are updated

according to the original cost matrix, i.e., the zero-delivery visits that violate the triangle inequality

are inserted into the routes, so that the solution adheres to the original cost matrix.

The B&C method is based on the linear relaxation of (49), (2), (4), (7), (9), (10), (13)–(16),

(50), (52), (53) and (54), while dynamically adding the subtour elimination constraints (11) and

(12), the capacity inequalities of Desaulniers, Rakke, and Coelho (2016) (adapted to a B&C context

by Skålnes et al. (2022)), and the Disjoint Route (DR) inequalities of Avella, Boccia, and Wolsey

(2018).

The integer feasible solution from the improvement heuristic is used to warm-start the B&C

method. After solving the linear relaxation, we iteratively separate and add violated subtour elim-

ination constraints and valid inequalities in the same manner as Skålnes et al. (2022) where the

following separation order is used:

(i) SECs (11)

(ii) CSECs (12)

(iii) Capacity inequalities (Skålnes et al. 2022)

(iv) Simple DR inequalities (Avella, Boccia, and Wolsey 2018)

(v) h-DR inequalities (Avella, Boccia, and Wolsey 2018)

Due to the computational complexity of the latter three classes of valid inequalities, we only

separate these in the root node. The SECs and the CSECs are separated at every node of the

B&B tree. After stage (ii), we only move on to separate the next class of valid inequalities if the

dual bound improvement from the previous iteration falls below a given threshold. All separation

problems are solved in the same manner as in Skålnes et al. (2022), but with a minor modification of

the separation algorithm for the h-DR inequalities to better handle the large instances. The default

setting of this algorithm accounts for route lengths of h= 8, which means we may have to enumerate

all routes of length 8 and less to verify that the separated valid inequality is in fact valid. From

preliminary testing, this route enumeration seems to become too costly if the potential number of

routes exceeds 1012. Therefore, we use h = 7 for |NC | ≥ 35, h = 6 for |NC | ≥ 50, and h = 5 for

|NC | ≥ 200.
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3.4. Modifications of the B&C embedded matheuristic to solve the SDVRP

In this section, we demonstrate how the B&C embedded matheuristic can be modified to solve the

SDVRP, which is a special case of the IRP where there is only a single time period, but where each

customer can be visited multiple times.

Let AC = {(i, j)∈NC ×NC |i ̸= j} be the set of arcs connecting every pair of customers. A known

property of the SDVRP is that there exists an optimal solution where no two routes can have more

than one split customer in common, as long as the triangle inequality is fulfilled (Desaulniers 2010).

From this, it further follows that an arc (i, j) ∈ AC between any pair of customers can appear at

most once in an optimal solution. Thus, we can use the IRP model from Section 2 to formulate a

relaxation of the SDVRP. We have T = {1} in the SDVRP and therefore omit the t-index in the

previously presented notation. A relaxation of the SDVRP can now be defined by (1)–(12) and with

the following variable domains:

qi =Di, i∈NC , (55)

si = 0, i∈N , (56)

δi ∈ {0,1, ..., V }, i∈N , (57)

xij ∈ {0,1}, (i, j)∈AC , (58)

x0j, xj0 ∈ {0,1, ..., V }, j ∈NC . (59)

Since the customers can be visited several times, the capacitated subtour elimination constraints

(12) may allow transshipments at some nodes, i.e., vehicles can swap loads at nodes they have in

common, which is not feasible in the SDVRP. We, therefore, add cutting planes dynamically to the

formulation every time the B&C method encounters such an infeasible solution. In this way, we

ensure a correct formulation of the SDVRP.

Let X be the set of all feasible solutions defined by (2)–(12) and (55)–(59), and let Y ⊂ X be

the set of feasible solutions for the SDVRP. Furthermore, let AT
k = {(i, j) ∈A | xk

ij ≥ 1} be the set

of arcs in a feasible solution xk for a solution k ∈ X \ Y. We can then add feasibility cuts (60), as

proposed by Archetti, Bianchessi, and Speranza (2014), to the relaxed formulation:∑
(i,j)∈A\AT

k

xij ≥ 1, k ∈X \Y. (60)

Similar to the aforementioned paper, we use a mathematical program to determine whether a

solution to the relaxed SDVRP is feasible for the full problem or not. However, we use a three-

index vehicle flow formulation, equivalent to that of Coelho and Laporte (2014), where the arcs of a
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potentially feasible solution are allocated to vehicles, unlike the route-based procedure in Archetti,

Bianchessi, and Speranza (2014). If this allocation problem is feasible, we have a feasible solution

to the SDVRP, if not, we cut it off by adding the corresponding feasibility cut (60).

The B&C method is based on the model defined by (1)–(10) and (55)–(59), where the subtour

elimination constraints (11) and (12) are added dynamically at every node of the B&B tree. In

addition, we dynamically add the special case of the capacity inequalities (Skålnes et al. 2022),

namely the rounded capacity inequalities for the CVRP (Laporte and Nobert 1983) in the root node.

The DR–inequalities are redundant for the SDVRP, so these are omitted. Whenever an infeasible

solution is encountered, verified by a three-index vehicle flow model, we cut off the solution by

adding the corresponding feasibility cut (60).

For the construction heuristic, the route-based MILP is significantly reduced as well. In addition,

we must allow for multiple visits to the same customer. Please see Appendix C for further details

and a complete mathematical model. For the route generation, the first method (the giant tour

method) must be slightly changed. Since the customers do not have an upper limit for inventory,

we must instead use their demand as a starting point. The second method (the shifting assignment

method), is reduced to a simple CVRP for the SDVRP and is hence not applicable to this problem

variant.

For the improvement heuristic, it follows that the improvement MILP is reduced since the SDVRP

is a single-period problem. Please see Appendix D for more details and a complete mathematical

model. The function V RP (x) must be updated to account for solutions where one or several cus-

tomers are visited by multiple vehicles. This is achieved by splitting the relevant customer nodes

into multiple nodes, to create a feasible CVRP instance. For instance, if a customer is visited by

three different routes, it is split into three separate nodes. Their demand in the CVRP instance is

equal to the demand that was delivered to them in the current SDVRP solution.

4. Computational study for the IRP

The proposed B&C embedded matheuristic has been tested on known benchmark instances from

the literature, and the results have been compared with all methods we are aware of, where detailed

computational results are publicly available. Moreover, we have analyzed each of the new features of

the improvement heuristic and evaluated their effect on the overall solution. First, we describe the

benchmark instances in Section 4.1, before we discuss parameter settings. The different components

of the B&C embedded matheuristic are analyzed in Section 4.2, and the computational results for the

benchmark instances are presented in Section 4.3. Further, we test the B&C embedded matheuristic

on the DIMACS instances and compare the results with those of the DIMACS Implementation

Challenge in Section 4.4. All computational experiments were run on a single thread on a 12 core
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Intel E5-2670v3 processor clocked at 2.3 GHz and 64 GB RAM. The algorithm is coded in C++

and the commercial solver Gurobi 9.5.1 has been used. Detailed solution files are publicly available

at http://axiomresearchproject.com/

4.1. Benchmark instances, solution methods and parameter settings

Two sets of benchmark instances exist for the IRP with the ML inventory policy. The first set was

proposed by Archetti et al. (2007) and consists of small single-vehicle instances with high or low

inventory costs, multiples of five, 5k, number of customers where k= [1,2, ...,10] and k= [1,2, ...,6]

for three and six time periods, respectively. Each configuration has five versions, giving us a total

of 160 instances. The second set was proposed by Archetti et al. (2012) and consists of large single-

vehicle instances with six time periods, high or low inventory costs, and 50, 100, or 200 customers.

Each configuration has ten versions, giving us a total of 60 instances. Both sets were made for the

single-vehicle IRP, but were extended to up to five vehicles by Coelho, Cordeau, and Laporte (2012).

This gives us 878 multi-vehicle instances in total (two of the five-vehicle instances are infeasible).

For the DIMACS Implementation Challenge, specific instance files were made for the multi-vehicle

instances, i.e., for two, three, four, and five vehicles. However, they have slightly different vehicle

capacities from what has normally been used in the literature. Coelho, Cordeau, and Laporte (2012)

determined the capacity of each vehicle by taking the vehicle capacity of a single-vehicle instance,

dividing it by the number of vehicles available, and then rounding it to the nearest integer. For the

DIMACS Implementation Challenge, the vehicle capacities have been floored to the nearest integer

instead. This gives, for some instances, a smaller solution space. In addition, the DIMACS instances

include 160 new instances consisting of 5k customers and six time periods, where k = [7,8,9,10].

Another difference is that the solutions to the DIMACS instances are reported without the inventory

holding costs of the initial inventory in time period t= 0.

4.1.1. State-of-the-art solution methods. As shown in the introduction, many solution

methods exist for the IRP with an ML inventory policy. We have, to the best of our knowledge,

compared our results with all solution methods with publicly available results. A detailed overview

of the methods included in this study can be found in Table 1, where we list the reference to the

paper (Reference), the abbreviation we use (Abbreviation), and the type of solution method (Sol),

processor (CPU), number of threads (# Threads), and commercial solver (solver) used. Finally, we

report their Passmark score (Passmark). Note that the code for the B&C-method of Coelho and

Laporte (2014) was re-used by Desaulniers, Rakke, and Coelho (2016) and we have reported these

results. Sakhri, Tlili, and Korbaa (2022) did not provide detailed results.

http://axiomresearchproject.com/
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Table 1 Benchmark solution methods. We present the solution approach, CPU, number of threads, MILP solver

and Passmark score. Note: Sol: Solution approach, E: Exact, H: Heuristic/Metaheuristic, M: Matheuristic, Def:

Default, Passmark: Passmark score
Reference Abbreviation Sol CPU #Threads Solver Passmark
Archetti et al. (2007) A-BC E Pentium IV 2.8 GHz Def Cplex 9.0 236
Archetti et al. (2012) AR-M1 M Intel Dual Core 1.86 GHz Def Cplex 10.1 -
Coelho and Laporte (2014) CL-BC E Core i7-2600 3.4 GHz 1 Cplex 12.2 1,742
Adulyasak, Cordeau, and Jans (2014) AD-BC E Intel Xeon 2.67 Ghz 8 Cplex 12.3 5,658
Adulyasak, Cordeau, and Jans (2014) AD-M M 2.10 GHz Duo CPU PC Def Cplex 12.3 -
Desaulniers, Rakke, and Coelho (2016) D-BPC E Core i7-2600 3.4 GHz 1 Cplex 12.2 1,742
Archetti, Boland, and Speranza (2017) AR-M2 M Xeon W3680, 3.33 GHz 8 Cplex 12.5 6,913
Avella, Boccia, and Wolsey (2018) AV-BC E Core i7-2620, 2.70 GHz 1 Xpress 7.6 1,462
Alvarez, Munari, and Morabito (2018) AL-SA H Core i7-2600 3.4 GHz 1 - 1,742
Alvarez, Munari, and Morabito (2018) AL-ILS H Core i7-2600 3.4 GHz 1 - 1,742
Chitsaz, Cordeau, and Jans (2019) C-M M Xeon X5650 2.67 GHz 1 Cplex 12.6 1,300
Guimarães et al. (2020) G-BC E Xeon E5-2630 v2 2.60 GHz 6 Gurobi 8.1 7,490
Manousakis et al. (2021) M-BC E Intel Core i7-7700 CPU 3.60 GHz 8 Gurobi 8.1 8,652
Alvarez et al. (2020) AL-M M Xeon X5650 2.67 GHz 1 Cplex 12.8 1,300
Diniz, Martinelli, and Poggi (2020) D-M M Intel Core i7-8700K 3.7 GHz 1 LEMON 2,759
Vadseth, Andersson, and Stålhane (2021) V-M1 M Xeon Gold 6144 3.5 GHz 1 Gurobi 9.0 2,523
Archetti et al. (2021) AR-M3 M Xeon E5-1620 v3 3.50 GHz 1 Cplex 12.10 2,022
Skålnes et al. (2022) SK-BC E Intel E5-2670v3 2.3GHz 1 Gurobi 9.0.2 1,691
Achamrah (2022) AC-M M Quad-core Intel Core i7 3.3 GHz Def CPLEX 12.9 -
Solyalı and Süral (2022) S-M M Xeon X5650 2.67 GHz 1 CPLEX 12.7 1,300
Vadseth et al. (2023) V-M2 M Xeon Gold 6144 3.5 GHz 1 Gurobi 9.1 2,523
This paper E Intel E5-2670v3 2.3GHz 1 Gurobi 9.5.1 1,691

4.1.2. Parameter settings. The parameter settings in this work are a result of preliminary

testing, and little effort has been put into parameter tuning. We used the same parameter settings

as Vadseth, Andersson, and Stålhane (2021) for the construction heuristic when relevant. The route-

based MILP has a time limit of 1.5|NC | seconds. For the improvement heuristic, IT1 = 4, IT2 = 5,

k-value= |NC |/2, clusterSize= 3 and M = 3. The improvement MILP has a time limit of 4|NC |

seconds. The B&C method has a time limit of 600 seconds in the root node for the original instances

and 200 seconds for the DIMACS instances. The entire B&C embedded matheuristic algorithm has

a time limit of 7,200 seconds for the original instances. For the DIMACS instances, the time limit is

set according to the rules of the DIMACS Implementation Challenge:
2,000

Passmark score
1,800 seconds.

Please note that the time consumption of the route generation process of the construction heuristic

is insignificant compared with the total time consumption and that the CVRP-solver terminates

after 2,000 iterations without improvements.

4.2. Analysis of the branch-and-cut embedded matheuristic

In this section, we analyze the different components of the B&C embedded matheuristic, mainly

focusing on the matheuristic and the interaction between the matheuristic and the B&C method.

To examine the impact of these features, we test various configurations on a subset consisting of 20

% of the benchmark instances, i.e., version 1 of the small instances and versions 1 and 2 of the large

instances. Here, we only present the conclusions, and we refer to Appendix A for more extensive

and detailed analyses.

https://www.passmark.com
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First, we investigate whether our proposed improvements of the matheuristic, i.e., the construc-

tion and improvement heuristic, lead to better final solutions compared with the base version of

the matheuristic with none of the proposed improvements. The base version only uses the giant

tour route generation in the construction heuristic and single customer insertions and removals

in the improvement heuristic. Here, our analyses show that adding the shifting assignment route

generation method improves the solutions by 13.6 % on average compared with the base version.

This also highlights the importance of the starting solution, as the matheuristic is dependent on a

good starting solution due to the limited number of iterations it can perform. Further, we found

that including cluster insertions and removals of clusters with cardinality two and three improved

the solutions on average by 11.1% compared with the base version. When combining both these

components, i.e., both the shifting assignment method in the construction heuristic and the clus-

ter insertions and removals in the improvement heuristic, the matheuristic found solutions that on

average are 14.8% better than the base version. This indicates that our proposed improvements are

crucial for the good results obtained by the B&C embedded matheuristic. We refer to Table 11 in

Appendix A for more details.

Now that we have established that it is preferable to include insertions and removals of clusters

of cardinality two and three, we examined how often these route modifications are performed. We

find that for the small instances, clusters of cardinality one, two, and three are inserted on average

5.57, 0.55, and 0.19 times per instance, respectively. The corresponding number of removals are on

average 4.16, 1.01, and 0.11 times per instance, respectively. For the large instances, we find that

clusters of cardinality one, two and three are inserted on average 16.49, 1.04, and 0.24 times per

instance, respectively, and they are removed on average 16.42, 3.48, and 0.55 times per instances,

respectively. Not surprisingly, we can observe that the single-customer insertions and removals are

the route modifications most frequently used by the improvement MILP. An interesting observation

is that the average number of cluster insertions and removals of cardinality two and three increases

with the size of the instances, which might indicate that it is more crucial to include these features

for large instances than for small instances. This is indeed natural since it is less likely to insert

or remove several consecutive customers to improve the solution when there are few customers

involved. We refer to Table 12 in Appendix A for more details.

Another important aspect of the B&C embedded matheuristic is how effective the loop between

the B&C method and the improvement heuristic is. Every time the B&C embedded matheuristic

is run, the improvement heuristic is called at least once, but on the benchmark instances, it was

never called more than four times. In total, the B&C method was able to improve the warm-

start solution provided by the improvement heuristic 157 and 53 times, for the small and large

instances, respectively. Each such improvement induced a new call to the improvement heuristic
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which in turn improved these solutions in total 61 and 31 times for the small and the large instances,

respectively. Finally, this resulted in that 54 and 28 instances were improved by a successive call

to the improvement heuristic from within the B&C method, for the small and large benchmark

instances respectively. Focusing on the number of iterations of the loop between the improvement

heuristic and the B&C method, we found that the largest improvement from one iteration to the

next occurs in the second iteration. This is indeed expected, as each improvement is one step closer

to the optimal solution. We refer to Table 13 in Appendix A for more details.

Lastly, we found that the B&C embedded matheuristic obtained much better average dual bounds

on the large instances than the B&C method alone. On most of the 100- and 200-customer instances,

the B&C method alone found very weak dual bounds or not even a bound at all, i.e., it did not

successfully solve the root node within the time limit. However, when providing the commercial

solver with a feasible primal solution, we observe that it solved the linear relaxation much faster

and successfully obtained a strong dual bound. However, for the small instances, we see a different

effect. Here the B&C method alone obtained the best average dual bounds. This indicates that the

good primal bound from the matheuristic that potentially could be used to prune the B&B tree or

perform variable fixing did not make up for the lost time running the matheuristic, which otherwise

could be used to process more nodes of the B&B tree. We refer to Table 14 in Appendix A for more

details.

4.3. Computational results on the benchmark instances

In this section, we present the computational results for the B&C embedded matheuristic on the

878 multi-vehicle benchmark instances ranging from two to five vehicles. In the overview displayed

in Table 1 we see that the CPU Passmark score varies greatly across the various published methods.

In addition, different software has been used in the various methods. Therefore, we find it hard

to give a fair comparison of computational times between the various methods and have chosen to

focus on solution quality for the computational study of this work. For the sake of readability, we

only include the state-of-the-art (SOTA) solution methods in the presented tables, and we define

this to be a method that has found a unique best-known solution (BKS) on at least one benchmark

instance. Only 7 of the 22 methods included in this study qualify as SOTA methods according

to this definition, and those are the matheuristics of Chitsaz, Cordeau, and Jans (2019) (C-M),

Diniz, Martinelli, and Poggi (2020) (D-M), Solyalı and Süral (2022) (S-M), Vadseth, Andersson,

and Stålhane (2021) (V-M1), and Vadseth et al. (2023) (V-M2), as well as the B&C methods of

Guimarães et al. (2020) (G-BC) and Manousakis et al. (2021) (M-BC). A comparison with all

published results can be found in the provided excel sheets. In addition, we would like to point out

that Archetti et al. (2021) obtained high-quality solutions in a reasonable computational time, even
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though they have no unique BKSs. Also, we would like to highlight the simulated annealing method

and the iterated local search algorithm of Alvarez, Munari, and Morabito (2018), that found good

solutions in an impressively short time, using less than 30 seconds for the small instances and less

than 60 seconds for the large instances.

Table 2 reports the number of BKSs and unique BKSs (in parentheses) for each of the SOTA

methods. We see from Table 2 that our B&C embedded matheuristic finds more BKSs and unique

BKSs than the other methods, especially on the large instances. The only subset where we do not

have the most BKSs are the small two-vehicle instances, where we have 13 less than the B&C

method of Guimarães et al. (2020). We can also observe that the exact methods found many more

BKSs on the small instances than the matheuristics, which is not surprising given that many of

these instances are solved to optimality.
Table 2 Overview of the number of BKSs (unique BKSs).

Set V C-M D-M S-M G-BC M-BC V-M1 V-M2 This paper # inst.

Small

2 19 (0) 118 (0) 38 (0) 160 (5) 146 (0) 72 (0) - 148 (0) 160
3 23 (5) 83 (3) 46 (3) 124 (4) 126 (6) 56 (3) - 131 (5) 160
4 13 (5) 47 (3) 34 (4) 88 (1) 115 (16) 33 (1) - 125 (14) 160
5 16 (4) 40 (0) 27 (0) 73 (0) 122 (15) 31 (1) - 131 (23) 158

Sum Small 71 (14) 288 (6) 145 (7) 445 (10) 509 (37) 192 (5) - 534 (42) 638

Large

2 0 (0) - 3 (3) 6 (5) 9 (8) 1 (1) 1 (1) 41 (41) 60
3 0 (0) - 10 (10) 0 (0) 1 (1) 1 (1) 0 (0) 48 (48) 60
4 0 (0) - 0 (0) 0 (0) 1 (0) 0 (0) 2 (2) 58 (57) 60
5 0 (0) - 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 59 (59) 60

Sum Large 0 (0) - 13 (13) 6 (5) 11 (9) 2 (2) 4 (4) 206 (205) 240
Total Sum 71 (14) 288 (6) 158 (20) 451 (15) 520 (46) 194 (7) 4 (4) 741 (247) 878

Apart from the number of BKSs, it is also interesting to investigate the overall quality of the

solutions. We measure this by the average primal gap. Table 3 reports the average primal gaps,

where the primal gap is defined as: Primal gap = (UBi −UBbest)/UBbest, where UBi is the upper

bound obtained by method i and UBbest is the BKS across all methods listed in Table 1. The

primal gaps are aggregated per number of customers separated between the sets of small and large

instances. Here, our method obtains the best average primal gap for all instances with more than 30

customers. Compared with the other methods the average primal gaps are especially good for the

large instances, which indicates that our solutions are also good for the instances where our method

does not find the BKS.
Table 3 Overview of average primal gaps (%).

Set |NC | C-M D-M S-M G-BC M-BC V-M1 V-M2 This paper
Small 5–50 3.04 0.47 0.51 0.38 0.06 1.16 - 0.05

Large
50 3.53 - 1.53 3.60 1.18 0.98 1.30 0.07
100 2.91 - 1.44 17.25 1.75 1.09 1.29 0.03
200 2.42 - 1.43 29.47 - 1.36 1.40 0.00

Average Large 2.95 - 1.47 16.77 1.47 1.14 1.33 0.04
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So far we have focused on the upper bound obtained by our method, but since it is exact, it is

also interesting to see how good lower bounds it obtains. Therefore, we calculate the dual gap for

each method on each instance, defined as: Dual gap= (LBbest−LBi)/LBbest, where LBi is the lower

bound obtained by method i and LBbest is the best-known lower bound across all methods listed

in Table 1. Table 4 reports the average dual gap aggregated per number of customers and divided

between the sets of small and large instances. In this table, we include all exact methods that have

solved the multi-vehicle IRP and made their results publicly available, i.e., the BP&C method of

Desaulniers, Rakke, and Coelho (2016) (D-BPC), the B&C methods of Coelho and Laporte (2014)

(CL-BC), of Avella, Boccia, and Wolsey (2018) (A-BC), of Guimarães et al. (2020) (G-BC) and of

Manousakis et al. (2021) (M-BC). The detailed dual bounds were not available for the B&C method

of Adulyasak, Cordeau, and Jans (2014). Here it is clear that Desaulniers, Rakke, and Coelho (2016)

outperformed the other methods on the set of small instances. The B&C method obtaining the best

average dual gap across the small instances is that of Manousakis et al. (2021), but our method is

better on the small three-period instances of 35–50 customers. This is likely because the time spent

in the improvement heuristic of the B&C embedded matheuristic has a small impact on the dual

bound for the three-period instances. For the six-period instances, the time spent to obtain good

primal bounds in the improvement heuristic leaves less time allocated to process the B&B tree,

ultimately resulting in weaker dual bounds than the B&C method of Manousakis et al. (2021). The

big difference in Passmark score between these methods might also play an important role, which

makes the comparison harder.
Table 4 Overview of average dual gaps (%) for exact methods.

Set |NC | CL-BC D-BPC A-BC G-BC M-BC This paper
Small 5–50 3.82 0.26 1.15 2.95 0.59 0.60

Large
50 - - - 13.19 0.28 0.40
100 - - - 5.89 0.11 0.32
200 - - - 9.14 - 0.00

Average Large - - - 9.41 0.19 0.24
Average all 3.82 0.26 1.15 4.72 0.51 0.50

Shifting the focus to the number of optimal solutions, as reported in Table 5, we see that all

three B&C methods find a similar number of optimal solutions. In total, 480 instances are solved to

proven optimality by at least one method, and the G-BC, M-BC, and the B&C of this paper found

four, two, and one optimal solutions, respectively, that no other method is able to prove optimality

for. However, here the inconsistencies of the results in the literature become apparent. Using an

optimality gap tolerance of 10−4, as most commercial solvers use by default, we see that the methods

of both Chitsaz, Cordeau, and Jans (2019) and Solyalı and Süral (2022) find more optimal solutions

than BKSs. This is due to the fact that for 20 of the instances across all previously published results

of our overview, the best lower bound entry is higher than the best upper bound entry. In some
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cases, it seems like there is an error in the reported lower bound, but in others in the reported upper

bound. However, the only way to be sure would be to use a feasibility checker that guarantees that

every solution is evaluated the exact same way. For the inconsistent instances where a solution is

found feasible, we know that the lower bound must be wrong, and if not, that the upper bound

must be wrong. This demonstrates the potential benefit of using a benchmark set where there is a

feasibility checker available. This is also a motivation for why we recommend researchers to publish

their solution files including routing decisions and corresponding delivered quantities.
Table 5 Overview of the number of optimal solutions found.

Set V C-M D-M S-M G-BC M-BC V-M1 This paper

Small

2 28 114 51 149 142 71 145
3 21 85 44 120 114 50 116
4 12 44 36 86 92 32 99
5 12 41 30 69 100 29 98

Sum Small 73 284 161 424 448 182 458

Table 6 reports the average computational times for the 307 small instances where G-BC, M-BC

and the B&C embedded matheuristic all terminated before the two-hour time limit. We believe

this gives a fairer comparison of the computational time than including all instances, as that would

skew the averages towards the time limit and perhaps cancel out some of the variations between the

methods. Here we see that the matheuristics are considerably faster than the three B&C methods

and that the B&C methods of Guimarães et al. (2020) and Manousakis et al. (2021) are faster

than the B&C embedded matheuristic. However, adjusting the times with the Passmark score, we

may multiply the average times of G-BC and M-BC by 7490/1691 ≈ 4.42 and 8652/1691 ≈ 5.11,

respectively. This leads to average computational times for the small instances of 2,064 and 1,616

seconds for G-BC and M-BC, respectively. This is most likely an overestimate since the benefit of

multi-thread computing is small in the root node, but increases when getting many nodes in the

B&B tree. In addition, we have used Gurobi 9.5.1 while G-BC and M-BC have used Gurobi 8.1,

which also impacts the results.

An interesting observation from Table 6 is that our method has shorter computational times on

the four- and five-vehicle instances than the two- and three-vehicle instances compared with the

two other B&C methods. The main reason for this seems to be that there are more six-period

instances solved to optimality for two and three vehicles than for four and five. Our preliminary

testing indicated that the B&C method struggles to completely close the optimality gap when using

the new customer schedule formulation on the small six-period instances. The dual bounds are good,

but the method spends more time closing the last 0.ε% of the optimality gap for the small six-period

instances than if the B&C method was based on the customer schedule formulation of Skålnes et al.

(2022). However, the benefit of the new customer schedule formulation is that the B&C method

obtains strong dual bounds on the large instances, as seen in Table 4.
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Table 6 Average computational times in seconds on the 307 instances terminated by G-BC, M-BC, and the B&C

embedded matheuristic before the two-hour time limit.
Set V C-M D-M S-M G-BC M-BC V-M1 This paper

Small

2 55 61 11 327 229 18 639
3 29 37 15 425 502 14 814
4 17 26 23 618 274 9 259
5 16 33 80 702 287 10 245

Sum Small 35 44 25 466 316 14 552

4.4. Computational results on the DIMACS instances

We have tested the B&C embedded matheuristic on the DIMACS instances and compared our

results with all methods that were used in the DIMACS Implementation Challenge. This includes

MrOptimal, which is an earlier version of the method presented in this paper. We have followed the

rules as stated in the DIMACS Implementation Challenge, and all solutions have been checked by

the provided feasibility checker. Table 7 reports the number of BKSs and unique BKSs. We can see

from the table that our proposed method finds the second most BKSs for the set of small instances

and the highest number for the large instances. Table 8 reports the primal gap, in the same manner

as in Section 4.3, and it is clear that the proposed method has the best average primal bounds for

both sets of instances. The results in Table 7 and Table 8 demonstrate that the method presented

in this paper is a significant improvement of MrOptimal. It is also worth noting that MrOptimal

has lost several BKSs on the large instances to the version presented in this paper, which is why it

now has fewer BKSs than the 2FHBC method.
Table 7 Overview of the BKSs (unique BKSs) on the DIMACS instances.

Set |NC | plaisir TSMHA IRPUC 2FHBC MrOptimal This paper # inst.
Small 5–50 265 (0) 429 (42) 496 (26) 587 (65) 508 (31) 573 (75) 798

Large
50 0 (0) 8 (7) 8 (7) 9 (8) 15 (11) 45 (42) 80
100 0 (0) 0 (0) 2 (2) 2 (2) 19 (18) 58 (57) 80
200 0 (0) 0 (0) 0 (0) 0 (0) 27 (27) 53 (53) 80

Sum Large 0 (0) 8 (7) 10 (9) 11 (10) 61 (56) 156 (152) 240
Sum all 265 (0) 437 (49) 506 (35) 598 (75) 569 (87) 729 (227) 1038

Table 8 Overview of average primal gaps (%) on the DIMACS instances.
Set |NC | plaisir TSMHA IRPUC 2FHBC MrOptimal This paper
Small 5–50 3.48 0.17 0.30 0.13 0.20 0.12

Large
50 8.98 0.55 1.16 0.69 0.35 0.14
100 23.92 1.08 1.64 1.21 0.26 0.10
200 35.04 2.83 2.47 2.10 0.13 0.06

Average Large 22.65 1.49 1.76 1.33 0.25 0.10
Average all 7.91 0.48 0.64 0.40 0.21 0.12

5. Computational study for other routing problems
In this section, we demonstrate that the B&C embedded matheuristic can be efficiently used on

other routing problems to achieve high-quality solutions by solving the SDVRP. In addition, we
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demonstrate the potential of the improvement heuristic by running it on best-known solutions from

the CVRP literature. The tests have been performed using the same computational settings as for

the IRP.

5.1. Computational results on the split delivery vehicle routing problem

There exists several sets of benchmark instances for the SDVRP, that we have tested our method

on. One set is the benchmark instances proposed by Belenguer, Martinez, and Mota (2000), which

consists of 25 instances with 22–101 nodes with either a non-rounded or rounded cost matrix,

leading to a total of 50 distinct instances. Further, we have tested on the set of instances proposed

by Archetti and Speranza (2008), which consists of 42 instances with 50–199 customers organized

in six different groups. Here, the cost matrix is non-rounded. Lastly, we performed computational

tests on the 21 instances with 8-288 customers proposed by Chen, Golden, and Wasil (2007). The

distance matrix is non-rounded, and the customers are concentrically distributed around the depot.

It is common practice in the literature to solve these instances with both an unlimited fleet and

with the requirement of using exactly K = ⌈(
∑

i∈NC Di/Q)⌉ vehicles. This gives us a total of 226

instances.

We have compared our results with the state-of-the-art heuristics of Silva, Subramanian, and Ochi

(2015) (S–H) and He and Hao (2022) (H–H), and the exact methods of Archetti, Bianchessi, and

Speranza (2011) (A–BP), Archetti, Bianchessi, and Speranza (2014) (A–BC), Ozbaygin, Karasan,

and Yaman (2018) (O–BC), and Munari and Savelsbergh (2022) (MS–BC) . All parameters are kept

the same as for the IRP, except that the improvement MILP has a time limit of 300 seconds in each

iteration.

Table 9 reports for each method, the number of BKSs, unique BKSs and the number of solved

instances, respectively. The instances are divided into four subsets depending on whether the

instances are solved with a rounded (R) or non-rounded (NR) cost matrix, and whether the vehicle

fleet is limited (L) or unlimited (UL). Here we see that the memetic algorithm of He and Hao (2022)

clearly obtains the most BKSs and unique BKSs. However, our method finds the second most BKSs

and unique BKSs even though it is not specifically tailored to solve the SDVRP. In fact, on the

instances with rounded cost matrix and limited vehicle fleet, our method obtains the most BKSs

and unique BKSs, which demonstrates that the B&C embedded matheuristic works well also for

the SDVRP, and can even compete with the state-of-the-art method on a subset of the instances.

Moreover, we report the average primal gap in % for each of the methods in Table 10. This gives

a good indication of the quality of the solutions of each method. Although a method does not find

the BKS, it might not be far off. Here, we see that our method is, on average, 0.08% worse than

the BKSs, making it one of the top three methods in terms of average primal gaps, and it actually
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Table 9 The number of best-known solutions (unique best-known solution) out of the number of solved instances in

each instance set.
Cost Fleet A–BP A–BC O–BC MS–BC S–H H–H This paper
NR UL 2(0)/39 0(0)/0 0(0)/0 27(0)/56 43(2)/88 83(35)/88 39(3)/88
NR L 0(0)/0 24(0)/41 20(0)/28 23(0)/37 44(5)/88 81(36)/88 38(2)/88
R UL 0(0)/0 0(0)/0 0(0)/0 12(1)/25 13(0)/25 21(4)/25 17(3)/25
R L 0(0)/0 11(0)/16 8(0)/11 11(0)/14 14(1)/25 16(0)/25 22(6)/25

Sum 2(0)/39 35(0)/57 28(0)/39 73(1)/132 114(8)/226 201(75)/226 116(14)/226

obtains the lowest average primal gap for the subset of instances with rounded cost and limited

fleet. We believe this demonstrates the potential the B&C embedded matheuristic has to find good

quality solutions to a wider range of routing problems other than the IRP.
Table 10 Average primal gap (%) from best-known solution.

Cost Fleet A–BP A–BC O–BC MS–BC S–H H–H This paper
NR UL 1.94 - - 2.35 0.05 0.00 0.09
NR L - 1.24 0.10 0.40 0.06 0.00 0.10
R UL - - - 2.54 0.11 0.02 0.08
R L - 0.65 0.06 0.82 0.09 0.07 0.03
Average 1.94 1.07 0.09 1.68 0.07 0.01 0.08

5.2. Computational results on the capacitated vehicle routing problem

To demonstrate the versatility of the new improvement MILP, we have tested it on the CVRP.

Similar to the SDVRP, the new improvement MILP can be adapted to the CVRP by assuming

that it is a single-period IRP with no initial inventories and inventory capacities equal to zero. The

mathematical model is given in Appendix E. The new improvement MILP has been tested on the

ten very large benchmark instances released by Arnold, Gendreau, and Sörensen (2019). The new

improvement MILP was warm-started with the current best-known solution from CVRPLib (Uchoa

et al. 2017) to see if it could improve the solution. A time limit of 10 000 seconds was used, and

the new improvement MILP was able to improve three of the best-known solutions. These were

Brussels2 (345,481→ 345,468), Flanders1 (7,240,124→ 7,240,118), and Flanders2 (4,373,320→

4,373,245). These results indicate that the proposed improvement MILP complements existing

neighborhood structures, as it is able to improve on instances where other state-of-the-art methods

have reached a local optimum.

6. Concluding remarks

In this paper, we have presented a generalized and improved version of the solution method that won

the IRP track of the 12th DIMACS Implementation Challenge. We have proposed a new method

for generating initial routes, a new generalized improvement MILP, and updated the mathematical

formulation used in the B&C method to account for larger instances. Our computational analyses

show that these enhancements significantly improved the method. Further, the B&C embedded
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matheuristic is general and can be used to solve several different types of routing problems. For

the IRP, it outperformed all published solution methods in terms of solution quality. The B&C

embedded matheuristic found the best-known solution for 741 out of 878 multi-vehicle benchmark

instances where 247 of them are strictly better than the previously best-known solutions found in the

literature. Further, 458 of the 741 solutions are proven optimal. Thus, the method clearly establishes

itself as state-of-the-art. In addition, the computational results show that the proposed method is

a significant improvement of the version that won the DIMACS Implementation Challenge. For

the SDVRP, the B&C embedded matheuristic produced competitive results compared with the

state-of-the-art methods and found the best-known solution for 116 out of 226 well-established

benchmark instances. Lastly, the new improvement heuristic was able to improve the best-known

solution for three out of ten large benchmark instances for the CVRP released by Arnold, Gendreau,

and Sörensen (2019).

To the best of our knowledge, we have gathered all published results from every published paper

that solves the multi-vehicle benchmark instances of the IRP and made the most complete overview

of IRP solutions ever created. We have made this overview easily available online, and we believe this

contribution is of great value to anyone interested in doing further research on the IRP. However,

our overview indicates that there are several inconsistencies across the results reported in the litera-

ture. This might be the result of numerical inaccuracies or varying interpretations of the instances.

One possible explanation for some of the inconsistencies might be that some works have omitted

constraints (6) and hence solved a relaxed version of the IRP as it is described in Archetti et al.

(2007). However, this is difficult for us to assess. Preceding the DIMACS Implementation Challenge,

an open-source feasibility checker (https://github.com/sbeyer/dimacs-irp-verifier) for the

DIMACS instances was made publicly available, which is a great resource to reduce the type of

errors found across several published articles. Hence, we encourage the research community to use

the DIMACS instances moving forward since they have an open-source feasibility checker publicly

available. We have provided our solutions for both the DIMACS instances and the original ones.
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A. More detailed analyses of the branch-and-cut embedded matheuritic

In this section, we analyze the different components of the B&C embedded matheuristic, mainly

focusing on the matheuristic and the interaction between the matheuristic and the B&C method. Let

us define the base configuration of the matheuristic as the method that only uses the construction

heuristic of Vadseth, Andersson, and Stålhane (2021), and the improvement heuristic with single-

customer insertions and removals. We start by analyzing the impact of the new shifting assignment

method (SAM), i.e., Algorithm 1, using cluster insertions of cardinalities two and three (C), and

cluster removals of cardinalities two (2R) and three (3R). To examine the impact of these features,

we test various configurations on a subset consisting of 20% of the benchmark instances, i.e., version

1 of the small instances and version 1 and 2 of the large instances.

Table 11 reports the average relative improvement of the gap from the base configuration, i.e.,

∆i = (gapi − gapbase)/gapbase, where the gap is defined as gap = (UBi − LB)/LB, where UBi is

the upper bound obtained by configuration i and LB is the best lower bound obtained across

all configurations of the B&C embedded matheuristic. The results are aggregated per number of

vehicles, and we can see that on average the best configuration of the matheuristic is to include

the new construction heuristic, cluster insertions, and cluster removals. On average it is not that

clear whether it is best to include cluster removals of cardinalities two and three, or just cardinality

two. Historically, the five-vehicle instances have been the most challenging instances for the B&C

methods. Since the configuration including both double and triple removals performs best on these

instances, we favor this configuration and use this for the remaining part of this computational

study.

From Table 11 we can also see that both the new construction heuristic and the cluster inser-

tions and removals significantly improve the upper bound individually, i.e., comparing "SAM" and

"C+2R+3R". However, the improvements are somewhat overlapping since the best configuration

"SAM+C+2R+3R" are less than 10% better than each of the mentioned configurations individu-

ally. Another interesting result from these tests is that the configuration "SAM+C+2R+3R" only

performs best on the five vehicle instances when in theory the improvement MILP has the largest

solution space with this configuration. Despite the large solution space it still might obtain worse

solutions at the end of the improvement heuristic, mainly due to two reasons. The most obvious

reason is that the large solution space makes the MILP harder to solve and in some instances it

might terminate without finding the optimal solution. The other reason might be less obvious, but

since the MILP is solved iteratively and different solutions generate different solution spaces in the

following iterations, they might create different paths through the solution space of the original

problem. For instance, a large solution space might find a better solution in the first iteration leading

the algorithm onto a different part of the solution space than a configuration with a small solution
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space. Even though the initial improvement is larger for a configuration with a large solution space

than one with a small solution space, the two configurations might end up in two different local

optima. We see that for some subsets of instances, the configurations with small solution spaces end

up in a better local optimum than that of a large solution space, but on average, the configurations

with the largest solution spaces, such as configuration "SAM+C+2R+3R", perform the best.
Table 11 Relative percentage improvement of the gap from the base version of the matheuristic.
V SAM SAM+C SAM+C+2R SAM+C+2R+3R SAM+2R+3R C+2R+3R
2 25.5 28.2 28.2 27.3 26.3 14.6
3 19.8 19.3 17.8 18.7 19.7 20.1
4 9.2 8.7 12.0 10.5 9.9 5.8
5 7.6 7.5 9.1 10.2 8.9 7.3

Average 13.6 13.7 14.8 14.8 14.3 11.1

Let us now focus on the improvement heuristic and examine the frequency of the customer

insertions and removals of cardinalities one, two, and three in the improvement MILP. Table 12

reports the average number of times per instance the various insertions and removals have been used,

aggregated per number of customers for all multi-vehicle benchmark instances. Not surprisingly,

we can observe that the single-customer insertions and removals are the most frequented route

modifications performed by the improvement MILP. An interesting observation is that the average

number of cluster insertions and removals of cardinality two and three increases with the size of the

instances, which might indicate that it is more crucial to include these features for large instances

than for small instances. This is indeed natural since it is often more difficult to remove or add

several customers from/into shorter routes which are used more frequently in small instances.
Table 12 Overview of average numbers of customer insertions and removals.

Insertions Removals
Set |NC | 1 2 3 1 2 3

Small

5 3.01 0.18 0.00 2.25 0.20 0.00
10 4.71 0.54 0.10 3.44 0.99 0.09
15 5.53 0.93 0.10 3.73 1.01 0.01
20 5.66 0.73 0.20 4.49 1.35 0.06
25 8.36 0.48 0.29 6.16 1.43 0.16
30 8.63 0.78 0.55 7.26 1.99 0.30
35 2.60 0.03 0.15 2.08 0.20 0.13
40 2.28 0.15 0.23 1.63 0.15 0.15
45 4.48 0.40 0.05 2.90 0.70 0.10
50 7.95 1.03 0.13 5.28 1.18 0.13

Average Small 5.57 0.55 0.19 4.16 1.01 0.11

Large
50 26.95 1.91 0.19 23.11 5.24 0.84
100 41.80 2.44 0.71 44.86 9.39 1.69
200 68.13 2.70 0.28 79.40 15.54 2.61

Average Large 45.63 2.35 0.39 49.13 10.05 1.71
Average all 16.49 1.04 0.24 16.42 3.48 0.55
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Another important aspect of the B&C embedded matheuristic is the interaction between the

B&C method and the improvement heuristic. We have therefore investigated how effective the loop

between these two components is. Table 13 reports aggregated results per number of customers for

all multi-vehicle benchmark instances and presents the number of times the improvement heuristic

has been called from within the B&C method ("#BC calls"), the number of times the improvement

heuristic found any improvements on the current incumbent solution ("#Improvements") and the

number of instances where at least one of these improvements were found ("#Imp. instances"). Every

time the B&C embedded matheuristic is run, it performs at least one iteration of the improvement

heuristic, but on the benchmark instances, it never performed more than four iterations. The three

rightmost columns of Table 13 reports the average relative improvement of the upper bound (UBi)

from the last solution found by the B&C method every time the improvement heuristic reached

a second, third or fourth iteration (i), i.e., Improvement = (UBB&C −UBi)/UBB&C . On average,

we see that the second iteration is the most effective in improving the upper bound, which is also

expected. For every improvement of a solution, the potential for further improvement is reduced. The

exception is the average relative improvement for the 35-customer instances where the improvement

is larger in the third iteration than in the second iteration.
Table 13 Analysis of the interaction between the improvement heuristic and the B&C method.

Relative improvement (%)
Set |NC | # Imp. instances # Improvements #BC calls 2nd it. 3rd it. 4th it.

Small

5 0 0 0
10 3 3 16 0.01
15 7 7 35 0.08
20 7 8 20 0.10 0.04
25 11 12 21 0.20 0.02
30 9 12 23 0.25 0.05 0.03
35 6 7 10 0.40 0.73
40 3 4 14 0.51 0.02
45 5 5 9 0.31
50 3 3 9 0.26

Sum/Average Small 54 61 157 0.22 0.15 0.03

Large
50 16 19 30 0.14 0.04
100 10 10 19 0.12
200 2 2 4 0.18

Sum/Average Large 28 31 53 0.13 0.04
Sum/Average all 82 92 210 0.19 0.12 0.03

We have established the best configuration of the matheuristic and demonstrated that it is ben-

eficial to call the improvement heuristic from within the B&C method, but let us now analyze

how it affects both the dual and primal bounds when the B&C method is combined with the

matheuristic. Table 14 shows the average dual and primal gaps aggregated per number of vehicles

for version 1 of the small instances and version 1 and 2 for the large instances. The dual gap is
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calculated as Dual gap= (LBbest −LBi)/LBbest, where LBi is the lower bound obtained by method

i and LBbest is the best-known lower bound of the two methods. The primal gap is defined as

Primal gap = (UBi − UBbest)/UBbest, where UBi is the upper bound obtained by method i and

UBbest is the best-known upper bound for a given instance from the three methods compared in

Table 14. Thus, the lowest possible gaps are zero. In Table 14, ’Matheuristic’ refers to the con-

figuration ’SAM+C+R2+R3’ of the matheuristic, ’B&C’ refers to the B&C method, and ’B&C

Mat’ refers to the B&C embedded matheuristic. Here we see that the B&C embedded matheuristic

obtained the best primal bounds across all the displayed subsets.

Focusing on the average dual gaps we see that the B&C embedded matheuristic obtained much

better average dual bounds on the large instances than the B&C method alone. On most of the

100- and 200-customer instances, the B&C method alone found very weak dual bounds or not even

a bound at all, i.e., it did not successfully solve the root node within the time limit. However,

when providing the commercial solver with a feasible primal solution, we observe that it solved the

linear relaxation much faster and successfully obtained a strong dual bound. However, for the small

instances, we see a different effect. Here the B&C method alone obtained the best average dual

bounds. This indicates that the good primal bound from the matheuristic that potentially could be

used to prune the B&B tree or perform variable fixing did not make up for the lost time running

the matheuristic, which otherwise could be used to process more nodes of the B&B tree.
Table 14 Average dual and primal gaps (%) for the matheuristic, B&C embedded matheuristic, and the B&C

method.
Dual gap Primal gap

Set V B&C B&C Mat Matheuristic B&C B&C Mat

Small

2 0.00 0.02 0.09 0.00 0.00
3 0.06 0.10 0.14 0.05 0.00
4 0.00 0.18 0.13 1.27 0.04
5 0.01 0.16 0.04 1.53 0.00

Average Small 0.02 0.12 0.10 0.71 0.01

Large

2 66.67 0.04 0.10 2133.47 0.09
3 58.33 0.04 0.05 1925.55 0.00
4 58.34 0.02 0.00 1499.72 0.00
5 58.34 0.02 0.00 1763.50 0.00

Average Large 60.42 0.03 0.04 1830.56 0.02
Average all 20.15 0.09 0.08 610.66 0.02
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B. Computational results: Extended tables
Table 15 Overview of average primal gaps (%) for the IRP.

Set |NC | C-M D-M S-M G-BC M-BC V-M1 V-M2 This paper

Small

5 4.65 0.02 0.76 0.00 0.00 0.15 - 0.00
10 5.87 0.38 0.33 0.02 0.00 0.92 - 0.00
15 4.03 0.45 0.29 0.08 0.00 1.05 - 0.01
20 3.44 0.50 0.58 0.33 0.02 0.70 - 0.05
25 2.90 0.55 0.73 0.51 0.06 1.33 - 0.08
30 2.03 0.57 0.77 0.69 0.11 1.12 - 0.15
35 0.64 0.53 0.25 0.33 0.09 2.61 - 0.01
40 1.05 0.66 0.45 0.42 0.05 1.77 - 0.04
45 0.60 0.66 0.32 0.52 0.10 2.25 - 0.02
50 0.71 0.72 0.26 1.52 0.40 1.34 - 0.12

Average Small 3.04 0.47 0.51 0.38 0.06 1.16 - 0.05

Large
50 3.53 - 1.53 3.60 1.18 0.98 1.30 0.07
100 2.91 - 1.44 17.25 1.75 1.09 1.29 0.03
200 2.42 - 1.43 29.47 - 1.36 1.40 0.00

Average Large 2.95 - 1.47 16.77 1.47 1.14 1.33 0.04

Table 16 Overview of average dual gaps (%) for the IRP.
Set |NC | CL-BC D-BPC A-BC G-BC M-BC This paper

Small

5 0.00 0.00 - 0.00 0.00 0.00
10 2.11 0.06 - 1.10 0.03 0.30
15 2.56 0.21 0.88 1.44 0.12 0.58
20 5.33 0.17 0.89 3.95 0.43 0.59
25 4.91 0.75 1.85 5.00 1.15 1.13
30 5.89 0.43 1.84 5.81 0.92 1.30
35 3.95 0.12 - 1.47 0.62 0.32
40 4.74 0.28 - 1.81 0.96 0.40
45 5.33 0.21 - 3.15 1.08 0.50
50 6.34 0.25 0.28 6.08 1.46 0.49

Average Small 3.82 0.26 1.15 2.95 0.59 0.60

Large
50 - - - 13.19 0.28 0.40
100 - - - 5.89 0.11 0.32
200 - - - 9.14 - 0.00

Average Large - - - 9.41 0.19 0.24
Average all 3.82 0.26 1.15 4.72 0.51 0.50
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Table 17 Overview of average primal gaps (%) on the DIMACS instances for the IRP.
Set |NC | plaisir TSMHA IRPUC 2FHBC MrOptimal This paper

Small

5 0.00 0.11 0.00 0.00 0.00 0.00
10 0.88 0.28 0.01 0.00 0.00 0.00
15 1.11 0.14 0.07 0.00 0.04 0.04
20 2.76 0.10 0.08 0.03 0.12 0.07
25 3.02 0.14 0.17 0.03 0.17 0.11
30 3.82 0.14 0.46 0.15 0.27 0.16
35 5.19 0.17 0.40 0.12 0.31 0.19
40 5.41 0.19 0.46 0.20 0.37 0.29
45 5.99 0.21 0.56 0.26 0.37 0.21
50 6.55 0.28 0.78 0.46 0.29 0.14

Average Small 3.48 0.17 0.30 0.13 0.20 0.12

Large
50 8.98 0.55 1.16 0.69 0.35 0.14

100 23.92 1.08 1.64 1.21 0.26 0.10
200 35.04 2.83 2.47 2.10 0.13 0.06

Average Large 22.65 1.49 1.76 1.33 0.25 0.10
Average all 7.91 0.48 0.64 0.40 0.21 0.12

Table 18 Overview of the BKSs (unique BKSs) on the DIMACS instances for the IRP.
Set N plaisir TSMHA IRPUC 2FHBC MrOptimal This paper # inst.

Small

5 78 (0) 41 (0) 78 (0) 78 (0) 78 (0) 78 (0) 78
10 55 (0) 39 (0) 72 (0) 79 (0) 74 (0) 79 (0) 80
15 40 (0) 42 (0) 58 (0) 79 (5) 60 (0) 67 (1) 80
20 24 (0) 52 (1) 54 (4) 68 (8) 53 (3) 55 (4) 80
25 25 (0) 45 (2) 46 (2) 61 (13) 48 (1) 57 (7) 80
30 14 (0) 47 (8) 40 (3) 53 (10) 45 (5) 50 (9) 80
35 9 (0) 48 (9) 46 (5) 50 (9) 42 (3) 46 (7) 80
40 8 (0) 37 (4) 37 (4) 43 (5) 46 (7) 51 (15) 80
45 9 (0) 45 (8) 36 (4) 45 (9) 34 (8) 44 (11) 80
50 3 (0) 33 (10) 29 (4) 31 (6) 28 (4) 46 (21) 80

Sum Small 265 (0) 429 (42) 496 (26) 587 (65) 508 (31) 573 (75) 798

Large
50 0 (0) 8 (7) 8 (7) 9 (8) 15 (11) 45 (42) 80

100 0 (0) 0 (0) 2 (2) 2 (2) 19 (18) 58 (57) 80
200 0 (0) 0 (0) 0 (0) 0 (0) 27 (27) 53 (53) 80

Sum Large 0 (0) 8 (7) 10 (9) 11 (10) 61 (56) 156 (152) 240
Sum all 265 (0) 437 (49) 506 (35) 598 (75) 569 (87) 729 (227) 1038

C. The route-based MILP for the SDVRP

For the construction heuristic, the route-based MILP for the SDVRP is reduced to:

min
∑
r∈R̂

Crλr (61)

∑
i∈Nr

qir ≤Qλr r ∈ R̂ (62)∑
r∈R̂

qir =Di i∈NC (63)
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qir ≤min{Q,Di}λr r ∈ R̂, i∈Nr (64)∑
r∈R̂

λr ≤ V (65)

qir ≥ 0 r ∈ R̂, i∈Nr (66)

λr ∈ {0,1} r ∈ R̂ (67)

Here, the set Nr holds all customers present in route r. The objective function (61) minimizes the

transportation costs, while constraints (62) ensure that the vehicle capacity is respected. Constraints

(63) state that all demand must be fulfilled, while constraints (64) ensure that a customer can only

be served by a route that is used. Moreover, constraint (65) states that we cannot use more vehicles

than available, while constraints (66)-(67) dictate the variable domains.

D. The improvement MILP for the SDVRP

Here, the improvement MILP for the SDVRP is defined. All notation has the same meaning as

previously defined. However, the t-indices are removed from all variables and parameters since the

SDVRP is a single-period problem.

min
∑
r∈R̂

CT
r λr −

∑
r∈R̂

∑
ϕ∈Φ

∑
p∈P

ϕ
r

CR
ϕprw

ϕ
pr +

∑
r∈R̂

∑
c∈Cr

CI
crzcr (68)

∑
i∈NC

qir ≤Qλr, r ∈ R̂, (69)∑
r∈R̂

qir =Di, i∈NC , (70)

zcrt ≤ λr, r ∈ R̂, i∈N r, c∈Cr : i∈ c, (71)

uir ≤ λr, r ∈ R̂, i∈Nr, (72)

qir −min(Q,Ui)(1−uirt)≤ 0, r ∈ R̂, i∈Nr, (73)

qir −min(Q,Ui)
∑

c∈Cr :i∈c

zcrt ≤ 0, r ∈ R̂, i∈N r, (74)

p+ϕ−1∑
p′=p

uir(p′)r ≥ ϕwϕ
pr, ϕ∈Φ, r ∈ R̂, p∈Pϕ

r , (75)

∑
c∈Cr :p∗r(c)=p

zcr +
∑
ϕ∈Φ

p∑
p′=p−ϕ+1

wϕ
p′r ≤ 1, r ∈ R̂, p∈ 1, . . . , |Nr|+1, (76)

λr ∈ {0,1}, r ∈ R̂, (77)

uir ∈ {0,1}, r ∈ R̂, i∈Nr, (78)

zcr ∈ {0,1}, r ∈ R̂, c∈ C, (79)

wϕ
pr ∈ {0,1}, ϕ∈Φ, r ∈ R̂, p∈Pϕ

r , (80)
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qir ≥ 0, i∈NC , r ∈ R̂. (81)

The objective function (68) minimizes the transportation costs, while constraints (69) state that the

capacity of a vehicle must be respected. Constraints (70) ensure that a customer’s demand is fully

served, while constraints (71) and (72) state that a customer can only be added or removed from

a route if that specific route is used. Moreover, a route can only serve a customer if that customer

is a part of the route according to constraints (73) and (74). Constraints (75) specify that all uirt

variables in sequence ϕ starting at position p are set to 1 if wϕ
prt is 1, and constraints (76) specify

that for each position p in route r, at most one cluster can be inserted or at most one sequence

including this position can be set to 1. Constraints (77)-(81) define the variable domains.

To ensure that the changes we make to the routes in R̂ give the correct changes in objective

value, we must put some limitations on the changes that can be made. This is achieved by adding

the following constraints:

uir(p∗r(c)−1)rt +uir(p∗r(c))rt ≤ 2(1− zcrt) r ∈ R̂, c∈ Cr, t∈ T , (82)

uir(p−1)rt +uir(p+ϕ)rt ≤ 2(1−wϕ
prt) ϕ∈Φ, r ∈ R̂, p∈Pϕ

r , t∈ T . (83)

Constraints (82) make sure that if cluster c is added to route r then the customers in positions

p∗r(c)−1 and p∗r(c) must be included in the route. Constraints (83) state that if a sequence of nodes

is removed from the route, then the node preceding and succeeding the sequence cannot be removed.

Please note that we assume that the triangle inequality holds

E. The improvement MILP for the CVRP

Here, the improvement MILP for the CVRP is defined. All notation has the same meaning as

previously defined. However, the t-indices are removed from all variables and parameters since the

CVRP is a single-period problem.

min
∑
r∈R̂

CT
r λr −

∑
r∈R̂

∑
ϕ∈Φ

∑
p∈P

ϕ
r

CR
ϕprw

ϕ
pr +

∑
r∈R̂

∑
c∈Cr

CI
crzcr (84)

∑
i∈Nr

Di(λr −uir)+
∑
i∈N r

∑
c∈Cr :i∈c

Dizcr ≤Qλr, r ∈ R̂, (85)

∑
r∈R̂:i∈Nr

(λr −uir)+
∑

r∈R̂:i∈N r

∑
c∈Cr :i∈c

zcr = 1, i∈NC , (86)

zcrt ≤ λr, r ∈ R̂, i∈N r, c∈Cr : i∈ c, (87)

uir ≤ λr, r ∈ R̂, i∈Nr, (88)
p+ϕ−1∑
p′=p

uir(p′)r ≥ ϕwϕ
pr, ϕ∈Φ, r ∈ R̂, p∈Pϕ

r , (89)
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∑
c∈Cr :p∗r(c)=p

zcr +
∑
ϕ∈Φ

p∑
p′=p−ϕ+1

wϕ
p′r ≤ 1, r ∈ R̂, p∈ 1, . . . , |Nr|+1, (90)

λr ∈ {0,1}, r ∈ R̂, (91)

uir ∈ {0,1}, r ∈ R̂, i∈Nr, (92)

zcr ∈ {0,1}, r ∈ R̂, c∈ C, (93)

wϕ
pr ∈ {0,1}, ϕ∈Φ, r ∈ R̂, p∈Pϕ

r , (94)

qir ≥ 0, i∈NC , r ∈ R̂. (95)

The objective function (84) minimizes the transportation costs, while constraints (85) state that

the capacity of a vehicle must be respected. Constraints (86) ensure that a customer must be served

exactly once, while constraints (87) and (88) state that a customer can only be added or removed

from a route if that specific route is used. Constraints (89) specify that all uirt variables in sequence

ϕ starting at position p are set to 1, if wϕ
prt is 1. Constraints (90) ensure that for each position p in

route r, at most one cluster can be inserted or at most one sequence including this position can be

set to 1. Constraints (91)-(95) define the variable domains. To make sure that the changes we make

to the routes in R̂ give the correct changes in objective value, we must put some limitations on the

changes that can be made. This is achieved by adding the following constraints:

uir(p∗r(c)−1)rt +uir(p∗r(c))rt ≤ 2(1− zcrt) r ∈ R̂, c∈ Cr, t∈ T , (96)

uir(p−1)rt +uir(p+ϕ)rt ≤ 2(1−wϕ
prt) ϕ∈Φ, r ∈ R̂, p∈Pϕ

r , t∈ T . (97)

Constraints (96) make sure that if cluster c is added to route r then the customers in positions

p∗r(c)−1 and p∗r(c) must be included in the route. Constraints (97) state that if a sequence of nodes

is removed from the route, then the node preceding and succeeding the sequence cannot be removed.

Please note that we assume that the triangle inequality holds.
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